KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY

UDYAMBAG, BELAGAVI-590008 (An Autonomous Institution under Visvesvaraya Technological University, Belagavi) (APPROVED BY AICTE, NEW DELHI)

Department of Computer Science & Engineering

M.Tech. Scheme and Syllabus (2020 Scheme) 1st to 2nd Semester M.Tech(Computer Science & Engineering)

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

To be a center of Excellence for Education, Research and Entrepreneurship in Computer Science and Engineering in creating professionals who are competent to meet emerging challenges to benefit society.

MISSION

To impart and strengthen fundamental knowledge of students, enabling them to cultivate professional skills, entrepreneurial and research mindset with right attitude and aptitude.

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
1.	The graduates will acquire core competence in basic science and engineering fundamentals necessary to formulate, analyze and solve engineering problems and to pursue advanced study.
2.	The graduates will acquire necessary techno-managerial and life-long learning skills to succeed as computer engineering professionals with an aptitude for higher education and entrepreneurship.
3.	The graduates will maintain high professionalism and ethical standards and also develop the ability to work in teams on IT as well as multidisciplinary domains.

PROGRAM OUTCOMES (POs)				
1	An ability to independently carry out research /investigation and development work			
1.	to solve practical problems.			
2.	An ability to write and present a substantial technical report/document.			
	Students should be able to demonstrate a degree of mastery over the area as per the			
3.	specialization of the program. The mastery should be at a level higher than the			
	requirements in the appropriate bachelor program.			

	PROGRAM SPECIFIC OUTCOMES (PSOs)
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts
	and algorithms along with tools to solve real world problems.
2	Develop Research Aptitude: Ability to identify research problem statement, carryout
4.	experimentation, draw inferences and present them at national and international level.
	Professional skills and Entrepreneurship: Ability to demonstrate professional and
3.	leadership qualities required to pursue innovative career in Information Technology,
	self-employment and research activities.

2020-21 Scheme of Teaching and Examination

1st to 4th Semester M. Tech.(Computer Science & Engineering)

Total credits for M.Tech. Program: 88

	Semester	Credits per Sem	Total credits
1	1	21	42
1st year	2	21	42
2nd year	3	23	16
	4	23	40
	Total	88	88

Curriculum frame work:

Sl. No.	Course	Credits	
1	Professional Core	PC	36
2	Professional Elective	PE	12
3	Online Courses (SWAYAM)	PC	09
4	Minor Project / Skill Development / Teaching Assistantship		04
5	Internship	PI	05
6	Project	PR	22
	Total		88

Theory Course Credits	Online Course Credits		
Duration of course	Credits	Online course duration	Credits
50 hours of course content	4	04 weeks	1
40 hours of course content	3	08 weeks	2
Lecture (L) One Hour /week	1	12 weeks	3
Practicals (P) Two hours /week	1		

	1 st Sem M.Tech											
S.N	Course	Course Course		Contac t Hours	Conta ct	Al	Credit Allocatio n		Total	Marks		
0.	Code			L -T- P	Hours/ week	L	Τ	Р	credit s	CIE	SEE	TO TA L
1.	20SCS11	Applied Mathematics	PC1	4-0-0	4	4	0	0	4	50	50	100
2.	20SCS12	Digital Image Processing	PC2	3-0-2	5	3	0	1	4	50+25	50+25	150
3.	20SCS13	Data Science & Analytics	PC3	3-0-2	5	3	0	1	4	50+25	50+25	150
4.	20SCS14 X	Elective-I	PE- I	4-0-0	4	4	0	0	4	50	50	100
5.	20SCS15	SWAYAM Online course	OC						3			
6.	20SCS16	Minor project / Skill Development / Teaching assistantship							2	25		25
		Total						21	275	250	525	

• OC: Student can register for one course of 12 weeks OR two courses (4 weeks+ 8weeks) to earn 3 credits

• Maximum TWO courses should be integrated type

ELECTIVE – I

r

20SCS141	Advances in Computer Networks
20SCS142	Data Mining & Warehousing
20SCS143	Advanced Algorithms
20SCS144	Advances in operating system

				2 nd Sem	M.Tech	1						
S.No	Course	Course Course	:	Contact Hours Cont act Hour		Credit Allocatio n			Total credit	Marks		
•	Code			L- T- P	s/wee k	L	Τ	Р	S	CIE	SEE	TOT AL
1.	20SCS21	Soft Computing Techniques	PC1	4-0-0	4	4	0	0	4	50	50	100
2.	20SCS22	Advances in Database Management System	PC2	3-0-2	5	3	0	1	4	50+25	50+25	150
3.	20SCS23	Research Methodology and IPR	PC3	3-0-2	5	3	0	1	4	50+25	50+25	150
4.	20SCS24 X	Elective- II	PE- II	4 – 0 - 0	4	4	0	0	4	50	50	100
5.	20SCS25	SWAYAM Online course	OC						3			
6.	20SCS26	Minor project / Skill Development / Teaching assistantship							2	25		25
		Total							21	275	250	525

• OC: Student can register for one course of 12 weeks OR two courses (4 weeks+ 8weeks) to earn 3 credits

• Maximum TWO courses should be integrated type

ELECTIVE-II

20SCS241	Artificial Intelligence & Agent Technology
20SCS242	Wireless Communication Technology
20SCS243	Robotic Process Automation
20SCS244	Information Storage Management

First Semester Detailed Syllabus Applied Mathematics (Theory)

Subject Code	20SCS11	Credits	4
Course Type	PC	CIE Marks	50
Hours/Week: L-T-P	4-0-0	SEE Marks	50
Total Hours	45	SEE	3
		Duration	

	Course learning objectives				
1.	To introduce the fundamental concepts of Probability and study their applications				
2.	To study various probability distribution functions and their characteristics.				
3.	To present statistical approaches and drawing inferences.				
4.	To present various regression techniques and study their effectiveness.				
5	To study the basics of cryptosystems and their application.				

Pre-requisites : Linear Algebra, Set theory, Number systems

Unit – I 9 Hours Introduction, Collection of Data, Mean, Median, Standard deviation, Statistical modeling, Scientific interpretation, Graphical diagnostics, Role of Probability, Sample space, Events, Counting Sample points, Permutations and Combinations, Probability of events, Rules and Axioms of Probability, Conditional Probability, Baye's Rule.

Unit – II	9 Hours
Concept of random variables, Probability Distributions : Mathematical expecta	ation, Variance
and Co-variance, Discrete distributions: Binomial, Poisson distribution and Po	bisson process,
Geometric and their properties. Continuous distributions: Uniform, Normal, A	Area under the
curve, Applications of Normal distribution, Gamma and exponential distribution	tions and their
properties.Weibull distribution	

Unit – 111	9 Hours
Fundamentals of Sampling : Random sampling, Population and samples. Impo	rtant statistics,
Mean, Sample variance. Data display and Graphical methods. Sampling distri	butions, Mean
and Variance, Central Limit theorem, t-Distributions and its Applications. (One and Two-
Sample hypothesis testing. Null and Alternate hypothesis. Testing a statistical h	ypothesis. One
and two tailed tests.	

Unit – IV 9 Hours Introduction to Regression: Simple, Linear Regression. Least square and fitted model. Properties of Least squares. Inferences covering the regression coefficients. Prediction, Analysis of variance, Simple regression, case-study. Multiple regression. Linear Regression using matrices. Analysis of Variance – ANOVA, Chi-Square and F-test.

Unit – V 9 Hours Natural numbers and Division Theorem. GCD – Euclid's method. Modular linear equations, Extended Euclid Algorithm. Modulo Inverse and Chinese remainder theorem. Modular exponentiation. Miller-Rabin Primality testing. RSA algorithm, Message Digest and Asymetric Cryptosystem. Elliptic Curves and its applications.

	Self Study Topics				
Unit	Topic description				
No.					
Ι	Permutation and Combinations, Set theory, Probability computation				
II	Multinomial and Hyper-geometric distributions				
III	BoxPlot, Quantile Plot.				
IV	Measure of Quality of fit.				
V	Fermat's theorem and primality testing.				

	Books				
	Text Books:				
1.	Walpole, Mayers, Ye, Probability and Statistics for Engineering and Scientits. 7th				
	Edition, Pearson.				
2.	Corman, Advanced Algorithms, 3 rd Edition, PHI, 2007.				
	Reference Books:				
1.	Purnachandra, Biswal, Probability and Statistics, PHI, 2007.				
2.	Murray and Spiedel, John Schiller, Probability and Satatistics, 2 nd Edition, Schaum's				
	Series, Tata McGraw Hill.				
	E-resourses (NPTEL/SWAYAM Any Other)- mention links				
1.	https://www.udemy.com/course/mathematics-for-data-science-and-machine-learning-				
	using-r/				
2.	https://nptel.ac.in/courses/106/106/106106221/ Cryptography				

Course delivery methods		Assessment methods	
1.	Chalk and Talk	1.	Quiz
2.	РРТ	2.	IA Tests
3.	Online Presentation through Gmeet	3.	Assignments
4.		4.	

	Course Outcome (COs)	
At th	e end of the course, students will be able to	
At th	e end of the course, the student will be able to	Bloom's Level
1.	Apply basic principles of probability and theorems to a wide variety of applications	3
2	Demonstrate the use of all the Probability distribution function tables and Compute the probability of occurrence of events	3
3.	Apply statistical models to problems in different domains and draw inferences.	3
4	Design appropriate regression models and evaluate the accuracy for a given application scenario	5
5	Apply number theory to build and analyze cryptosystems	3

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research /investigation and development	1

	work to solve practical problems.	
2	Students should be able to demonstrate a degree of mastery over the area as	2
2.	per the specialization of the program.	3

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics:				
Levels	Target			
1	>80 % of the total marks is scored by 60% of the students.			
2	Between 60 % and 79% of the total marks is scored by 60% of the students.			
3	<60 % of the total marks is scored by 60% of the students.			

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	1			2		
CO2	2		3	3		
CO3	1		2	3		3
CO4	2		3	1		
CO5	3			2		
l	levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

Writing two IA test is compulsory.
Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):		
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for		
	the calculation of SGPA and CGPA.		
2.	Minimum marks required in SEE to pass:		
3.	Question paper contains two questions from each unit each carrying 20 marks. Students		
	have to answer one full question from each unit.		

Digital Image Processing (integrated)

Course Code	20SCS12	Credits L-T-P	3-0-1
Course type	PC	Total credits	4
Hours/week: L-T-P	3-0-2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40 Hrs; $T = 0$ Hrs; $P = 24$ Hrs Total = 64 Hrs	SEE Marks	50(T)+25(L) = 75 marks

	Course learning
	Course rearing
	Objectives
1.	To understand the importance and applications of Digital Image Processing
2.	To understand the image representation and image formation in Gray.
3.	To understand the image fundamentals and mathematical transforms necessary for
	image processing and study the image enhancement techniques.
4.	To introduce the various image processing techniques in spatial and frequency domains.

Pre-requisites : Basics of Mathematical Analysis, Vectors, Matrices, Probability & Statistics Computer Programming

Unit – I	8 Hours
Introduction: What is Digital Image Processing, origins of digital imag	ge processing,
examples of fields that use DIP., fundamental steps in digital image processing,	components of
a digital processing system.	

List of Experiments:

1. Introduction to Matlab /Scilab with focus on Digital Image Processing.

Unit - II8 HoursImage Enhancement in the Spatial Domain: Some Basic Gray Level Transformations,
Histogram processing, Enhancement Using Arithmetic/Logic Operations, Basics of Spatial
Filtering, Smoothing Spatial Filters, Sharpening Spatial Filters.8 Hours

List of Experiments:

2.Implement the following basic gray level transformations on the given image(s):

- i) Image Negative
- ii) Log transformation
- iii) Power Law transformation
- iv) Contrast stretching
- **v**) Gray level slicing

Unit - III8 HoursImage Enhancement in the Frequency Domain: Introduction to the Fourier Transform and
the Frequency Domain, Smoothing Frequency-Domain Filters, Sharpening Frequency-
Domain Filters

List of Experiments:

3. Implement the following basic gray level transformations on the given image(s):

i) Bit plane slicing

ii) Histogram plotting

iii) Histogram equalization

iv) Arithmetic operation like image subtraction

v) AND /OR logic operations

Unit - IV8 HoursImage Restoration: A Model of the Image degradation/Restoration process, Noise Models,
Restoration in the Presence of Noise Only –Spatial Filtering, Periodic Noise Reduction by
Frequency Domain Filtering.

List of Experiments:

4. Implementation of Low-pass Butterworth filters in the frequency domain for various cut off

frequencies and comment on their performance.

			F
		Unit – V	8 Hours
Image Transform	ns: Introduction	on, Need for transforms, Classification of Ima	ge transforms,
Walsh transform,	Hadamard Tra	ansform, HAAR transform	
List of Experime	nts:		
5. i) Compute the	edges of the gi	ven image using the following edge detectors ar	nd comment on
.1	0 0		
their performance:			
i)	Roberts	ii) Prewitt	
ii. Compute the ed	ges of the give	en image using the following edge detectors and	comment on
the in menformer and a set			
their performance:			
i) Sobel	ii) Canny		
Self Study Topics			
TT .			

Unit	Topic description
No.	
1.	Structure of human eye and image formation in the eye.
3.	Relationship between sampling and frequency intervals.
4.	Linear position invariant degradations.
5.	Applications of image transformations.

Books	
	Text Books:
1.	Rafael C. Gonzalez and Richard E. Woods: Digital Image Processing PHI 2 nd Edition 2005.
2.	S. Jayaraman S. Esakkirajan, T.Veerakumar: Digital Image Processing, McGraw Hill Ed. (India) Pvt. Ltd. 2013.
	Reference Books:
1.	A.K.Jain: Fundamentals of Digital Image Processing Pearson, 2004.
2.	Scott E. Umbaugh: Digital Image Processing and Analysis, CRC Press, 2014.

	Course delivery methods		Assessment methods
1.	Lecture and Board	1.	Assignments and Open Book Assignments
2.	NPTEL/ Edusat	2.	Quizzes
3.	PowerPoint Presentation	3.	Internal Assessment Tests
4.	Videos	4.	Semester End Examination

Course Outcome (COs)			
At the end of the course, the student will be able to			
1.	Explain the importance of DIP and its applications.	[L1]	
2.	Explain the image formation and representation of digital images .	[L1]	
3.	Apply the spatial and frequency domain image processing techniques in gray & color.	[L3]	

Program Outcome of this course (POs)		PO No.
1.	An ability to independently carry out research/investigation and development	PO 1
	work to solve practical problems.	
2.	An ability to write and present a substantial technical report/ document.	PO 2
	Students should be able to demonstrate a degree of mastery over the area as	
3.	per the specialization of the program. The mastery should be at a level higher	PO 3
	than the requirements in the appropriate bachelor program.	

	Program Specific Outcome of this course (PSOs)	PSO
		No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics:		
Levels	Target	
1	50 % of the total marks is scored by 60% of the students.	
2	60 % of the total marks is scored by 70% of the students.	
3	70 % of the total marks is scored by 80% of the students.	

	CO-PO	Mapping (plan	ned)	CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3	
CO1	3	2	3	3	3	3	
CO2	3	2	2	2	2	2	
CO3	2	3	2	2	1	2	
CO4	2	2	1	3	2	2	
CO5	2	2	2	1	1	1	
le	levels: Low- 1, Medium- 2, High-3						

Scheme of Continuous Internal Evaluation (CIE)

Theory Component:						
Components	Addition of two IA testsAddition of two assignmentsSeminar/ Mini Project		Total Marks	Final marks		
Theory	30+30	10+10	20	100 (reduced to 50)	50	
■ 100 marks wil	l be reduced to 50 m	arks for the calc	ulation of	SGPA and CGPA		
Lab component:						
Components Conduct of the lab Journal submission Lab Test TotalMarks						
Lab 10 10 5 25		25				
Total CIE: 50 (T) +25(L) = 75 marks						
Minimum score to be eligible to SEE for this course : 40% in each component						
Not eligible in any one of the component will be considered as NOT eligible for the Course						

Scheme of Semester End Examination (SEE)

Scl	Scheme of Semester End Examination (SEE):					
Th	eory Component:					
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for					
	the calculation of SGPA and CGPA.					
2.	Minimum marks required in SEE to pass: 40 out of 100					
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to answer one full question from each unit.					

La	b component:					
1.	Initial write up	10 marks				
	Conduct of experiment(s), result and conclusion	20 marks	50 mortes			
	One marks question	10 marks	JU IIIaIKS			
	Viva-voce	10 marks				
2.	. It will be conducted for 50 marks having 3 hours/2 hours duration. It will be reduced to					
	25 marks for the calculation of SGPA and CGPA.					
3.	Viva-voce is conducted for individual student.					
То	Total SEE: 50(T) +25(L) = 75 marks					
Mi	nimum score for passing this course : 40% in eac	h component com	pulsory			
Not eligible in any one of the component will be considered as NOT eligible for the						
Co	urse					

Data Science & Analytics (Integrated)

Course Code	20SCS13	Credits L-T-P	3 - 0- 1
Course type	PC	Total credits	4
Hours/week: L-T-P	3 - 0 - 2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40 Hrs; T = 0 Hrs; P = 24 Hrs Total = 64 Hrs	SEE Marks	50(T)+25(L) = 75 marks

	Course learning objectives				
1.	To introduce the fundamentals of Data Analytics life cycle				
2.	To understand the functioning of unsupervised learning algorithms and their data analysis process.				
3.	To analyze the functioning of supervised learning algorithms and their data processing				
	cycle				

Pre-requisites : Design and Analysis of Algorithms, Artificial intelligence, Probability and Statistics

Unit – I	08 Hours
Introduction to Big Data Analytics: Big Data Overview, State of the Practice in	Analytics, Key
Roles for the New Big Data Ecosystem, Examples of Big Data Analytics. I	Data Analytics
Lifecycle: Data Analytics Lifecycle Overview, Phase 1: Discovery, Phase 2: Da	ta Preparation,
Phase 3: Model Planning, Phase 4: Model Building, Phase 5: Communicate Re	sults, Phase 6:
Operationalize.	
List of Europin onto	

List of Experiments:

1.Basics of Language R

2. Review of Basic Data Analytic Methods using R

			Unit	– II					80	3 Hours
Clustering:	Overview	of	Clustering,	K-means,	Use	Cases,	Overview	of	the	Method,
Determining	g the Numbe	er of	Clusters							
List of Exp	eriments:									

3. Demonstrate the use of K-means clustering algorithm with suitable data set.

Unit – III	08 Hours
Association Rules: Overview, Apriori Algorithm, Evaluation of Candidate Rules	, Applications
of Association Rules	

List of Experiments:

4. Demonstrate the Apriori algorithm using suitable example.

Unit - IV	08 Hours					
Regression: Linear Regression, Use Cases, Model Description, Diagnos	stics, Logistic					
Regression, Use Cases, Model Description, Diagnostics, Reasons to Choose and Cautions,						
List of Experiments:						
5. Demonstrate the application of Linear Regression model with suitable data set						
6. Demonstrate the application of Logistic Regression model with suitable data s	6. Demonstrate the application of Logistic Regression model with suitable data set					

Unit – V	
----------	--

Classification: Decision Trees, Overview of a Decision Tree, The General Algorithm, Decision Tree Algorithms, Evaluating a Decision Tree, Naive Bayes, Bayes' Theorem, Naïve Bayes Classifier, Smoothing, Diagnostics,

List of Experiments:

- 7. Demonstrate the use Decision Tree algorithm with the help of a suitable example.
- 8. Demonstrate the use Naïve Bayes algorithm with the help of a suitable example.

Self Study Topics				
Unit	Topic description			
No.				
1	Global Innovation Network and Analysis (GINA)			
2	Diagnostics, Reasons to Choose and Cautions, Additional Algorithms			
3	Transactions in a Grocery Store, Validation and Testing, Diagnostics			
4	Additional Regression Models.			
5	Diagnostics of Classifiers, Additional Classification Methods			

	Books
	Text Books:
1.	Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and
	Presenting Data. by EMC Education Sevices(Editor), Wiley 2015 and above.
	Reference Books:
1.	Data Science from Scratch: Joel Grus, O'reilly Publication.
2.	Data Science for Business: Foster Provost.
3.	Doing Data Science - Cathy O'neil.
	E-resourses (NPTEL/SWAYAM)
1.	https://nptel.ac.in/courses/106/106/106106212/
2.	https://swayam.gov.in/nd1_noc19_cs60/preview
3.	https://nptel.ac.in/courses/110/106/110106072/

Course delivery methods		Assessment methods	
1.	Lecture	1.	IA
2.	Chalk and Board	2.	Seminar/Course Project
3.	РРТ	3.	
4.	Online mode	4.	

	Course Outcome (COs)	
Δt tŀ	be end of the course, the student will be able to	Bloom's
Atu	le end of the course, the student will be able to	Level
1	Define, Understand and explain concepts of Data Science and Analytics	
	subject	L1
2	Apply machine learning and Statistics to find solutions to broad range of	
	problem statements	L2
3	Analyze various machine learning and statistical inference methods for a	
	given problem statement	L4
4	Validate the data and identify the anomalies through testing	L5

5	Demonstrate experiments of data science using modern tools like R and		
5	Python	L3	

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research /investigation and development work to solve practical problems.	1
2.	An ability to write and present a substantial technical report/document.	2
3.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program	3

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics	X:
Levels	Target
1	>70 % of the total marks is scored by 60% of the students.
2	Between 60 % and 79% of the total marks is scored by 60% of the students.
3	<60 % of the total marks is scored by 60% of the students.

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1			2			
CO2	2			2		2
CO3		3			3	
CO4			3			3
CO5	2		2			
						2
le	levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE)

Theory Compon	ent:				
Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50
■ 100 marks wil	l be reduced to 50 m	arks for the calc	ulation of	SGPA and CGPA	
Lab component:					
Components	Components Conduct of the lab Journal submission Lab Test Total Marks				
Lab	Lab 10 10 5 25			25	
Total CIE: 50 (Total CIE: $50(T) + 25(L) = 75$ marks				
Minimum score	Minimum score to be eligible to SEE for this course : 40% in each component				
Not eligible in any one of the component will be considered as NOT eligible for the Course					

Scheme of Semester End Examination (SEE)

Sc	heme of Semester End Examination (SEE):		
Th	eory Component:		
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for		
	the calculation of SGPA and CGPA.		
2.	Minimum marks required in SEE to pass: 40 ou	it of 100	
3.	Question paper contains two questions from each u have to answer one full question from each unit.	nit each carrying 2	0 marks. Students
La	b component:		
1.	Initial write up	10 marks	
	Conduct of experiment(s), result and conclusion	20 marks	50 montro
	One marks question	10 marks	50 marks
	Viva-voce	10 marks	
2.	It will be conducted for 50 marks having 3 hours/2	hours duration. It	will be reduced to
	25 marks for the calculation of SGPA and CGPA	4.	
3.	Viva-voce is conducted for individual student.		
То	tal SEE: 50(T) +25(L) = 75 marks		
Mi	nimum score for passing this course : 40% in eac	h component com	pulsory
No Co	t eligible in any one of the component will be ourse	considered as N	OT eligible for the

	Advances in Computer Networks				
Course Code	20SCS141	Credits L-T-P	4-0-0		
Course type	PE	Total credits	4		
Hours/week: L-T-P	4 - 0 - 0	CIE Marks	50 marks		
Total Hours:	45 Hrs	SEE Marks	50 marks		

	Course learning objectives		
1.	To become familiar with Computer Networks and the concepts of protocols.		
2.	To learn the concepts Wired and Wireless LANs		
3.	To learn the concept of Logical Addresses, Address Mapping, Error Reporting and		
	Multicasting		
4.	To understand the aspects of Network Security.		

Pre-requisites: Knowledge of Computer Networks.

9 Hours

Foundation

Building a Network, Requirements, Perspectives, Scalable Connectivity, Cost-Effective Resource sharing, Support for Common Services, Manageability, Performance.

Advanced Internetworking

The Global Internet: Routing Areas, Interdomain Routing (BGP)

Unit – I

	Unit – II	9 Hours
End-to-End Protocols		

Simple De-multiplexer (UDP); Reliable Byte Stream(TCP): End-to-End Issues, Segment Format, Connecting Establishment and Termination, Triggering Transmission, Adaptive Retransmission, TCP Extensions; Remote Procedure Call: RPC Fundamentals, RPC Implementations (SunRPC, DCE)

Congestion Control and Resource Allocation

Issues in Resource Allocation: Network Model, Taxonomy and Evaluation Criteria; Queuing Disciplines: FIFO, Fair Queuing; TCP Congestion Control: Additive Increase/ Multiplicative Decrease, Slow Start, Fast Retransmit and Fast Recovery.

Unit – III	9 Hours
Data Link Lawan	

Data Link Layer

Wired LANs: Ethernet:

IEEE Standards: Data Link Layer, Physical Layer; Standard Ethernet: MAC Sublayer, Physical Layer; Changes in the Standard: Bridged Ethernet, Switched Ethernet, Full Duplex Ethernet; Fast Ethernet: Mac Sublayer, Physical Layer;

Wireless LANs:

IEEE 802.11: Architecture, Mac Sublayer, Addressing Mechanism, Physical Layer; Bluetooth: Architecture, Bloetooth Layers, Radio Layers, Baseband Layers, L2CAP.

Unit – IV	9 Hours
Network Layer	
Logical Addresses: IPv4 Addressing: Address Space, Notations, Classful	l Addressing,
Classless Addressing, Network Address Translation; IPv6Addresses: Structure, A	Address Space.
Address Mapping, Error Reporting and Multicasting:	
Address Mapping: Mapping Logical to Physical Address: ARP, Mapping Physi	cal to Logical

Addressing: RARP, BOOTP and DHCP; ICMP: Types of Messages, Message Format, Error

Reporting, Query, Debugging; IGMP: Group Management, IGMP Messages, Message Format, IGMP Operation, Encapsulation, Netsat Utility.

Unit – V	9 Hours

Network Security

Security Services: Message Confidentiality, Integrity, Authentication, Nonrepudiation, Entity Authentication; Message Confidentiality: with Symmetric and Asymmetric Key Cryptography; Message Authentication; Digital Signature: Comparison, Need for Key, Process, Services, Signature Schemes; Entity Authentication: Password, Challenge-Response; Key Management: Symmetric Key Distribution, Public Key Distribution.

Self Study Topics			
Unit	Topic description		
No.			
1	Introduction to IP Version 6		
2	TCP Performance, Remote Procedure Call.		
3	Gigabit Ethernet		
4	ICMPv6		
5	Message Integrity.		

	Books				
	Text Books:				
1.	Larry Peterson and Bruce S Davis "Computer Networks : A System Approach" 5th				
	Edition, Elsevier -2014				
2.	Behrouz A. Forouzan, "Data Communications and Networking", McGraw-Hill, 4th				
	Edition and onwards				
	Reference Books:				
1.	Andrew S. Tenenbaum, "Computer Networks", Pearson, 4th Edition and onwards.				

Course delivery methods		Assessment methods	
1.	Lecture	1.	ΙΑ
2.	Chalk and Board	2.	Seminar/Course Project
3.	РРТ	3.	

Course Outcome (COs)

At the end of the course, the student will be able to		
1.	Classify different types of computer network and their protocol structures.	L1
2.	Demonstrate the knowledge of basic fundamental protocols used for communication and networking.	L3, L4
3.	Explain the use of TCP for routing in Ad-hoc networks.	L2
4.	Elucidate basic working of SDN and Block Chains.	L1 PO No.

Program Outcome of this course (POs)

1. **Scholarship of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyze and synthesis existing and new knowledge, and integration of the same for enhancement of knowledge.

1

2. Critical Thinking: Analyze complex engineering problems critically, apply 2

independent judgment for synthesizing information to make intellectual and /or creative advances for conducting research in a wider a wider theoretical, practical and policy context

	Program Specific Outcome of this course (PSOs)	PSO No
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1 1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Mapping through Direct Assessment:

Rubrics	S:
Levels	Target
1	>70 % of the total marks is scored by 60% of the students.
2	Between 50 % and 69% of the total marks is scored by 60% of the students.
3	<50 % of the total marks is scored by 60% of the students.

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	1			1		
CO2	1		2			1
CO3			2	1		
CO4	1		1			1
le	levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

➢ Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):		
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for		
	the calculation of SGPA and CGPA.		
2.	Minimum marks required in SEE to pass:		
3.	Question paper contains two questions from each unit each carrying 20 marks. Students		
	have to answer one full question from each unit.		

Data Mining and Data Warehousing

Course Code	20SCS142	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	45Hrs	SEE Marks	50 marks

	Course learning objectives		
1.	To introduce the basic concepts and techniques of data mining and data		
	warehousing.		
2.	To develop the skills using recent data mining software for solving practical problems.		
3.	To assess the strengths and weaknesses of various data mining methods and		
	algorithms.		

Pre-requisites : Database Management System, Information Management.

Unit – I	9 Hours
Introduction and Data Preprocessing :Why data mining, What is	data mining, What
kinds of data can be mined, What kinds of patterns can	be mined, Which
Technologies Are used, Which kinds of Applications are targete	ed, Major issues in
data mining .Data Preprocessing: An overview, Data cleaning, Dat	ta integration, Data
reduction, Data transformation and data discretization.	_

Unit – II	9 Hours
What is a Data Warehouse?, A Multidimensional Data Model, Data	Warehouse
Architecture, Data Warehouse Implementation, Data cube Technology,	From Data
warehousing to Data Mining.	

Unit – III	9 Hours
Classification and Prediction: Issues regarding Classification and	Prediction,
classification by Decision tree induction, Bayesian classification,	Rule-Based
classification, Classification Based on the concepts from association ru	ule mining.
Other classification methods, prediction.	

Unit – IV9 HoursCluster Analysis: What is Cluster Analysis? Types of data in cluster Analysis: a
Categorization of Major Clustering Methods, Partitioning Methods, Hierarchical
methods, Density-Based Methods, Model-Based Clustering Methods: Statistical
Approach, Neural Network Approach Outliner Analysis.

Unit – V9 HoursApplication and Trends in Data Mining:Data mining application, Data miningsystem Products research Prototypes, Additional Themes on Data Mining, DataMining and Intelligent Query Answering, Trends in Data Mining.

Self Study Topics		
Unit Topic description		
No.		
1	Real life examples of data mining.	
2	Case study of Data warehousing.	
3	Genetic Algorithm, KNN classifier	
4	Outlier Detection Methods	
5	Multidimensional Data Analysis in Cube Space	
Books		
Text Books:		
1.	Jiawei Han, Michelin Kamber, "Data Mining Concepts and Techniques", Morgan	
	KaufMann Publishers, 3 rd edition, July 2011.	
Reference Books:		
1.	Alex Berson and Stephen J Smith, "Data Warehousing, Data Mining and OLAP"	
	(Data Warehousing/Data Management). New Delhi : Tata Mcgraw- Hill, 2004.	
2.	Arun K Pujari, "Data Mining Techniques", Universities Press, Oct 2013.	
	E-resourses (NPTEL/SWAYAM Any Other)- mention links	
1.		
2.		

Course delivery methods		Assessment methods	
1.	Lecture	1.	ΙΑ
2.	Chalk and Board	2.	Seminar/Course Project
3.	РРТ	3.	
4.		4.	

	Course Outcome (COs)	
At the end of the course, the student will be able to Bloom Lev		Bloom's Level
1.	Demonstrate storing voluminous data for online processing and preprocess the data for mining applications.	[L3]
2.	Design and deploy appropriate classification techniques.	[L4]
3.	Apply clustering the high dimensional data for better organization of the data.	[L3]
4.	Demonstrate the classification, Regression & clustering technique.	[L3]
5.	Describe the basic principles and algorithms used in practical data mining and understand their strengths and weaknesses.	[L2]

		PO No.
	Program Outcome of this course (POs)	
1.	Scholarship of Knowledge : Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.	1
2.	Critical Thinking : Analyze complex engineering problems critically, apply independent judgment for synthesizing information to make intellectual and /or creative advances for conducting research in a wider a wider theoretical, practical and policy context.	2
3.	Usage of modern tools : Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities with an understanding of the limitations.	3

	Program Specific Outcome of this course (PSOs)	PSO
		No.
1	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
1.	concepts and algorithms along with tools to solve real world problems.	I
	Develop Research Aptitude: Ability to identify research problem statement,	
2.	carryout experimentation, draw inferences and present them at national and	2
	international level.	
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	

Rubrics:	
Levels	Target
1	50 % of the total marks is scored by 60% of the students.
2	80% of the total CIE is scored by 90% of the students.
3	60% of the total SEE is scored by 80% of the students.

CO-PO Mapping (planned)			CO-PSO Mapping(planned)		anned)	
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	1				2	
CO2		2	1	2		
CO3			2		1	
CO4		3		2		
CO5	3		2			3
le	levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

- Writing two IA test is compulsory.
 Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):		
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for		
	the calculation of SGPA and CGPA.		
2.	Minimum marks required in SEE to pass: 40		
3.	Question paper contains two questions from each unit each carrying 20 marks. Students		
	have to answer one full question from each unit.		

Advanced Algorithms (Theory)

Course Code	20SCS143	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	50 Hrs	SEE Marks	50 marks

Course learning objectives		
1.	To review various techniques for analysis of algorithms.	
2.	To study graph search algorithms.	
3.	To gain an understanding of Number Theoretic Algorithms	
4.	To learn algorithms for matching string	
5	To get an awareness of polynomial algorithms and study probabilistic and randomized	
	algorithms	

Pre-requisites : Design and Analysis of Algorithms.

Unit - I	10 Hours
Review of Analysis Techniques: Growth of Functions: Asymptotic notations; sta	indard
notations and common functions; Recurrences and Solution of Recurrence equations- The	
substitution method, The recurrence - tree method, The master method; Amortiz	ed Analysis:
Aggregate, Accounting.	

Unit - II	10 Hours
Graph Algorithms: Bellman - Ford Algorithm; Single source shortest paths in a I	DAG;
Johnson's Algorithm for sparse graphs; Flow networks and Ford-Fulkerson meth	iod

Unit - III	10 Hours
Number - Theoretic Algorithms: Elementary notions; GCD; Modular Arithmetic;	Solving
modular linear equations; The Chinese remainder theorem; Powers of an element	t; RSA
cryptosystem; Primality testing;	

Unit - IV	10 Hours
String-Matching Algorithms: Naïve string Matching; Rabin - Karp algorithm; Str	ring matching
with finite automata; Knuth-Morris-Pratt algorithm;.	

Unit - V	10 Hours
Probabilistic and Randomized Algorithms: Probabilistic algorithms; Randomizin	g
deterministic algorithms, Monte Carlo and Las Vegas algorithms;	

Self Study Topics		
Unit	Topic description	
No.		
1	Potential Methods	
2	Maximum bipartite matching	
3	Integer factorization.	
4	Boyer – Moore algorithms	
5	Probabilistic numeric algorithms.	

	Books
	Text Books:
1	T.H Cormen, C E Leiserson, R L Rivest and C Stein: Introduction to Algorithms, 3rd
•	Edition, Prentice-Hall of India, 2010.
2	Kenneth A Berman Jerome L Paul: Algorithms Cengage Learning 2002 and onwards
•	Remen 11. Derman, verome E. 1 aut. 1 ingoritamis, Congage Dearming, 2002. and on wards
	Reference Books:
1	1. EllisHorowitz, Sartaj Sahni, S. Rajasekharan: Fundamentals of Computer Algorithms, 2nd E
	dition,Universitiespress,2007.
2	2. Anany Levitin, Introduction to the Design & Analysis Of Algorithms 2nd Edition,
•	Pearson, 2009

Course delivery methods		Assessment methods	
1.	Lecture	1.	ΙΑ
2.	Chalk and Board	2.	Seminar/Course Project
3.	РРТ	3.	
4.		4.	

Course Outcome (COs)				
At the end of the course, the student will be able to				
1.	Analyze the complexity of a given algorithm by applying algorithm analysis technique	[L4].		
2.	Demonstrate the working of shortest path algorithms on directed graphs	[L3].		
3.	Compute modulo inverse of a given number using extended Euclid technique	[L3]		
4.	Design & demonstrate an algorithm to test the primality with lowest probability of error	[L6].		
5	Design an efficient string search algorithm & demonstrate its working	[L6].		

	Program Outcome of this course (POs)	PO No.
1.	Critical Thinking: Analyze complex engineering problems critically, apply independent judgment for synthesizing information to make intellectual and /or creative advances for conducting research in a wider a wider theoretical, practical and policy context.	2
2.	Problem Solving: Think laterally and originally, conceptualize and solve engineering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise	3
3.		

	Program Specific Outcome of this course (PSOs)	PSO
		No.
	Analyzing and Modeling skills: Ability to analyze and use of	
1.	mathematical concepts and algorithms along with tools to solve real	1
	world problems.	
	Develop Research Aptitude: Ability to identify research problem	
2.	statement, carryout experimentation, draw inferences and present them	2
	at national and international level.	
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative	3
	career in Information Technology, self-employment and research	3
	activities.	

Rubrics:	
Levels	Target
1	80% of the total CIE marks is scored by 90% of the students.
2	60% of the total SEE marks is scored by 80% of the students
3	

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1		1	1	1		1
CO2			1	2	1	1
CO3		2	2	1	2	
levels: Low- 1, Medium- 2, High-3						

Scheme of Continuous Internal Evaluation (CIE):

Componente	Additi	on of	Addition of two	Seminar/ Mini	Total	Final
Components	two	IA	assignments	Project	Marks	marks
Theory	30+	-30	10+10	20	100 (reduced to 50)	50
➢ Writing two IA test is compulsory.						

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for				
	the calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass:				
3.	Question paper contains two questions from each unit each carrying 20 marks. Students				
	have to answer one full question from each unit.				

Advances in Operating System (Theory)

Course Code	20SCS144	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	45 Hrs	SEE Marks	50 marks

Course learning objectives				
1.	Introduce the fundamentals of Operating System.			
2.	Present the concepts of distributed operating system that includes Architecture, Mutual			
	Exclusion Algorithms, Deadlock Detection Algorithms and Agreement Protocols.			
3.	Discuss distributed resource management components including algorithms for			
	implementation of distributed shared memory, recovery and commit protocols.			
4.	Identify the components and management aspects of Real time, Mobile operating			
	Systems.			

Pre-requisites: Computer Concepts & Programming, Computer Organization.

Unit – I	9 Hours
Operating System Overview, Process description & Control: Operating System	tem Objectives
and Functions, Major Achievements, Developments Leading to Modern Oper	ating Systems,
Microsoft Windows Overview, Traditional UNIX Systems, Modern UNIX Systems	ems, What is a
Process?, Process States, Process Description, Process Control, Execution of	the Operating
System, Security Issues.	

Unit – II	9 Hours
Threads, SMP, and Microkernel, Virtual Memory: Processes and Threa	ds, Symmetric
Multiprocessing (SMP), Micro Kernels, Windows Vista Thread and SMP Hours	Management,
Linux Process and Thread Management. Hardware and Control Structures, Ope	erating System
Software, UNIX Memory Management.	

		Un	nit – III			9 Hours
Multiprocessor an	d Real-	Time	Scheduling:	Multiprocessor	Scheduling	, Real-Time
Scheduling, Linux S	cheduling	, UNIX	K PreclsSl Sche	eduling, Windows	Vista Hour	s Scheduling,
Process Migration, D	Distributed	Globa	l States, Distril	outed Mutual Exc	lusion.	

Embedded Operating Systems: Embedded Systems, Characteristics of Embedded Opera	Unit – IV 9 Hours	Unit – IV
	Embedded Systems, Characteristics of Embedded Operating	Embedded Operating Systems: Embedded
Systems, eCOS, TinyOS, Computer Security Concepts, Threats, Attacks, and Assets, Intrud	r Security Concepts, Threats, Attacks, and Assets, Intruders.	Systems, eCOS, TinyOS, Computer Security

Unit – V	9 Hours			
Kernel Organization: Using Kernel Services, Daemons, Starting the Kernel, Control in the				
Machine, Modules and Device Management, MODULE Organization, MODU	LE Installation			
and Removal, Process and Resource Management, Running Process Manag	ger, Creating a			
new Task , IPC and Synchronization, The Scheduler , Memory Manager , The V	/irtual Address			
Space, The Page Fault Handler, File Management. The windows NT/2000/XP	kernel:			
Introduction, The NT kernel, Objects , Threads, Multiplication Synchron	ization, Traps,			
Interrupts and Exceptions, The NT executive , Object Manager, Proce	ss and Thread			
Manager, Virtual Memory Manager, I/o Manager.				

	Self Study Topics				
Unit	Topic description				
No.					
1	The Evolution of Operating Systems.				
2	Windows Vista Memory Management, Summary.				
3	Distributed Deadlock.				
4	Malicious Software Overview, Viruses, Worms, and Bots, Rootkits.				
5	The cache Manager Kernel local procedure calls and IPC, The native API,				
	subsystems.				

	Books					
	Text Books:					
1.	William Stallings: Operating Systems: Internals and Design Principles, 6th Edition,					
	Prentice Hall, 2013.					
2.	Gary Nutt: Operating Systems, 3rd Edition, Pearson, 2014.					
	Reference Books:					
1.	Silberschatz, Galvin, Gagne: Operating System Concepts, 8th Edition, Wiley, 2008					
2.	Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems, Design and					
	Implementation, 3rd Edition, Prentice Hall, 2006.					
3.	Pradeep K Sinha: Distribute Operating Systems, Concept and Design, PHI, 2007.					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	https://nptel.ac.in/courses/106/106/106106144/					
2.	https://www.cse.iitb.ac.in/~mythili/os/					

Course delivery methods		Assessment methods		
1.	Lecture and Board	1.	Internal Assessments	
2.	Power point presentations	2.	Assignments	
3.	Videos	3.	Quiz/ Seminar/ Course Project	
4.	Classroom Exercises	4.		

	Course Outcome (COs)	
At th	ne end of the course, the student will be able to	Bloom's Level
1.	Demonstrate the Mutual Exclusion, Deadlock Detection and Agreement Protocols of Distributed Operating System.	L3
2.	Explain the various resource management techniques for distributed systems.	L2
3.	Identify the different features of real time and mobile operating system.	L4
4.	Modify existing open source kernels in terms of functionality or features used.	L4

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research /investigation and development work to solve practical problems.	1
2.	An ability to write and present a substantial technical report/document.	2
3.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program	3

Program Specific Outcome of this course (PSOs)

		No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics:

Levels	Target
1	Internal Assessments: 50 % of the total marks is scored by 60% of the students. (It is example)
2	Assignments: 60 % of the total marks is scored by 70% of the students.
3	Quiz/ Seminar/ Course Project: 60 % of the total marks is scored by 70% of the students.

CO-PO Mapping (planned)				CO-PS	O Mapping(pla	nned)
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	2	2	-	2	2	-
CO2	1	2	-	1	1	-
CO3	3	3	1	2	2	1
CO4	2	2	2	2	2	1
levels: Low- 1, Medium- 2, High-3						

Scheme of Continuous Internal Evaluation (CIE):

Componente	Addition of	Addition of two	Seminar/ Mini	Total	Final
Components	two IA	assignments	Project	Marks	marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

➢ Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):			
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for			
	the calculation of SGPA and CGPA.			
2.	Minimum marks required in SEE to pass:			
3.	Question paper contains two questions from each unit each carrying 20 marks. Students			
	have to answer one full question from each unit.			

Second Semester Detailed Syllabus SOFT COMPUTING TECHNIQUES (Theory)

Course Code	20SCS21	Credits L-T-P	4-0-0
Course type	PC	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	50 Hrs	SEE Marks	50 marks

Course learning objectives			
1.	To introduce the principles behind soft computing techniques.		
2.	To design and develop system that use Neural Network and Fuzzy Logic.		
3.	To introduce genetic approach in solving computationally hard problems.		

Pre-requisites : Discrete Mathematical Structures, Probability and Statistics.

Unit – I	10 Hours	
Introduction: Neural networks, Application Scope of Neural Networks, Fuzzy Logic, Genetic		
Algorithm, Hybrid Systems, Soft Computing.		
Artificial Neural Network: An Introduction, Fundamental Concepts, Evolution of Neural		
Networks, Basic Models of Artificial Neural Networks, Important Terminologies of ANNs,		
McCulloch- Pitts Neuron, Linear Separability, Hebb Network.		
Init – II	10 Hours	

Unit – II	10 110015
Supervised Learning Network: Perceptron Networks: Perceptron Learning Ru	ule, Perceptron
Training Algorithm for single Output Classes, Adaptive Linear Neuron (Adalir	ne): Delta Rule
for Single Output Unit, Back-Propagation Network.	

Fuzzy Logic,
on Classical
zzy Relations,

Unit – IV	10 Hours
Membership Functions: Features of the Membership Functions, Fuzzificatio	n, Methods of
Membership Value Assignments.	
Defermine officer Defermine Methods	

Defuzzification: Defuzzification Methods.

Unit – V	10 Hours		
Genetic Algorithm: Introduction, What are Genetic Algorithm?, Why Genetic	c Algorithms?,		
Genetic Algorithm and Search Space: Evolution and Optimization, Basic Terminologies in			
Genetic Algorithms, Operators in Genetic Algorithms: Encoding, Selection	ion, Crossover		
(Recombination), Mutation.			

Self Study Topics			
Unit	Topic description		
No.			
Ι	Associative Memory Networks: Bidirectional Associative Memory (BAM),		
	Hopfield Networks		
II	Radial Basis Function Networks		
III	Applications of Fuzzy systems		
IV	Application of Defuzzification		
V	Case study on Genetic Algorithm		

	Books		
	Text Books:		
1.	S.N. Sivanandam, S.N. Deepa, Principles of Soft Computing, 2 nd Edition Wiley		
	Publisher.		
	Reference Books:		
1.	Patnaik, Srikanta, Zhong, Baojiang (Eds.), Soft Computing Techniques in		
	Engineering Applications, Springer 2014.		
	E-resourses (NPTEL/SWAYAM Any Other)- mention links		
1.	https://nptel.ac.in/courses/106/105/106105173		
2.	https://lecturenotes.in/subject/124/soft-computing-sc		

Course delivery methods		Assessment methods	
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

	Course Outcome (COs)	
At th	ne end of the course, the student will be able to	Bloom's Level
1.	Design Neural Network to solve problems in a variety of engineering domains	L5
2.	Design systems that employ fuzzy control approach	L5
3.	Device systems that employ genetic algorithm and demonstrate their working.	L3

Program Outcome of this course (POs)		
	An ability to independently carry out research /investigation and	
1.	development	1
	work to solve practical problems.	
2.	An ability to write and present a substantial technical report/document.	2

	Students should be able to demonstrate a degree of mastery over the area as	
3	per	
	the specialization of the program. The mastery should be at a level higher	3
5.	than the	5
	requirements in the appropriate bachelor program	

	Program Specific Outcome of this course (PSOs)	PSO
		No.
1	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
1.	concepts and algorithms along with tools to solve real world problems.	I
	Develop Research Aptitude: Ability to identify research problem statement,	
2.	carryout experimentation, draw inferences and present them at national and	2
	international level.	
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	

Rubrics:	
Levels	Target
1	80% of the total CIE marks is scored by 90% of the students.
2	60% of the total SEE marks is scored by 80% of the students
3	

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	2	2		1	2	
CO2	1		1		1	1
CO3	1	2	2	1	1	
le	vels: Lo	levels: Low- 1, Medium- 2, High-3				

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of		Addition of two	Seminar/ Mini	Total	Final
Components	two	IA	assignments	Project	Marks	marks
Theory	30+	⊦30	10+10	20	100	50
Writing two IA test is compulsory.						
Minimum marks required to qualify for SEE : 20 out of 50						

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for				
	the calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass:40				
3.	Question paper contains two questions from each unit each carrying 20 marks. Students				
	have to answer one full question from each unit.				

Advances in Database Management System (Integrated)

Course Code	20SCS22	Credits L-T-P	3 - 0- 1
Course type	PC	Total credits	4
Hours/week: L-T-P	3-0-2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40 Hrs; T = 0 Hrs; P = 24 Hrs Total = 64 Hrs	SEE Marks	50(T)+25(L) = 75 marks

Course learning objectives				
1.	Define parallel and distributed databases and its applications.			
2.	Show applications of Object Oriented database.			
3.	Explain basic concepts, principles of intelligent databases.			
4.	Utilize the advanced topics of data warehousing and mining.			
5	Extend knowledge in research topics of databases.			

Pre-requisites : Database Management System.

Introduction

Review of Relational Data Model and Relational Database Constraints: Relational model concepts; Relational model constraints and relational database schemas; Update operations, anomalies, dealing with constraint violations, Types and violations. Overview of Object-Oriented Concepts – Objects, Basic properties. Advantages, examples, Encapsulation, class hierarchies, polymorphism, examples.

8 Hours

Unit – I

Self learning topics: Abstract data types

Unit – II8 HoursObject and Object-Relational Databases: Overview of OOP; Complex objects; Identity,
structure etc. Object model of ODMG, Object definition Language ODL; Object Query
Language OQL; Conceptual design of Object database. Overview of object relational features
of SQL; Object-relational features of Oracle; Implementation and related issues for extended
type systems; syntax and demo examples.

Self learning topics: Nested relational model

Unit – III	8 Hours
Parallel and Distributed Databases: Architectures for parallel databases;	Parallel query
evaluation; Parallelizing individual operations; Parallel query optimizations; I	introduction to
distributed databases; Distributed DBMS architectures; Storing data in a Distr	ibuted DBMS;
Distributed catalog management; Distributed Query processing; Distributed	1 transactions;
Distributed Concurrency control and Recovery.	

Self learning topics: Updating distributed data.
Unit – IV	8 Hours				
Data Warehousing, Decision Support and Data Mining: Introduction to de	Data Warehousing, Decision Support and Data Mining: Introduction to decision support;				
OLAP, multidimensional model; Window queries in SQL; Finding ans	wers quickly;				
Implementation techniques for OLAP; Data Warehousing; Views and Decision	support, View				
materialization, Maintaining materialized views. Introduction to Data Mining	; Counting co-				
occurrences.					

Self learning topics: Mining for rules.

Unit - V8 HoursEnhanced Data Models for Some Advanced Applications: Active database concepts and
triggers; Temporal, Spatial, and Deductive Databases – Basic concepts. More Recent
Applications: Mobile databases; Multimedia databases; Geographical Information Systems.

Self learning topics: Genome data management.

	Unit – VI 18 Hours					
	List of experiments					
1.	Implementation of different constraint violations in relational model.					
2.	Develop a database application to demonstrate storing and retrieving of BLOB and					
	CLOB objects.					
	a. Write a binary large object (BLOB) to a database as either binary or character					
	(CLOB) data, depending on the type of the field in your data source. To write a BLOB					
	value to the database, issue the appropriate INSERT or UPDATE statement and pass the					
	BLOB value as an input parameter. If your BLOB is stored as text, such as a SQL					
	Server text field, pass the BLOB as a string parameter. If the BLOB is stored in binary					
	format, such as a SQL Server image field, pass an array of type byte as a binary					
	parameter.					
	b. Once storing of BLOB and CLOB objects is done, retrieve them and display the					
	results accordingly.					
2.	Develop a database application to demonstrate the representation of multi valued					
	attributes, and the use of nested tables to represent complex objects. Write suitable					
	queries to demonstrate their use.					
	Consider Purchase Order Example: This example is based on a typical business activity:					
	managing customer orders. Need to demonstrate how the application might evolve from					
	relational to object-relational, and how you could write it from scratch using a pure					
	object-oriented approach.					
	a. Show how to implement the schema Implementing the Application under the					
	Relational					
	Model using only Oracle's built-in data types. Build an object-oriented application on					
	top of this relational schema using object views.					

3.	Design and develop a suitable Student Database application by considering						
	appropriate attributes. Couple of attributes to be maintained is the Attendance of a						
	student in each subject for which he/she has enrolled and Internal Assessment						
	Using TRIGGERS, write active rules to do the following:						
	a. Whenever the attendance is updated, check if the attendance is less than 85%; if so,						
	notify the						
	Head of the Department concerned.						
	b. Whenever, the marks in an Internal Assessment Test are entered, check if the marks						
	are less than 40%; if so, notify the Head of the Department concerned.						
4.	Mini- Project: (Each student must implement one mini project using ADBMS						
	concepts)						
	• ^						

	Books
	Text Books:
1.	Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education, 2013.
2.	Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition,McGraw-Hill, 2013.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106/106/106106095/
2.	

Course delivery methods			Assessment methods		
1.	Lecture and Board	1.	Internal Assessments		
2.	Power point presentations	2.	Assignments		
3.	Videos	3.	Quiz/ Seminar/ Course Project		
4.	Classroom Exercises	4.			

	Course Outcome (COs)			
At th	ne end of the course, the student will be able to	Bloom's Level		
1.	Select the appropriate high performance database like parallel and distributed database	L3		
2.	Infer and represent the real world data using object oriented database	L3		
3.	Interpret rule set in the database to implement data warehousing of mining	L4		
4	Discover and design database for recent applications database for better interoperability	L4		

	Program Outcome of this course (POs)	PO No.
1	An ability to independently carry out research /investigation and development	1
1.	work to solve practical problems.	
2	Students should be able to demonstrate a degree of mastery over the area as	2
۷.	per the specialization of the program.	3

	Program Specific Outcome of this course (PSOs)	PSO
		No.
1	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
1.	concepts and algorithms along with tools to solve real world problems.	L
	Develop Research Aptitude: Ability to identify research problem statement,	•
2.	carryout experimentation, draw inferences and present them at national and	2
	Desferience de la litter en de Entremente en litter de la manufactorie	
3.	Professional skills and Entrepreneurship: Ability to demonstrate	
	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	

Rubrics:					
Levels	Target				
1	>70 % of the total marks is scored by 60% of the students.				
2	Between 60 % and 79% of the total marks is scored by 60% of the students.				
3	<60 % of the total marks is scored by 60% of the students.				

CO-PO Mapping (planned)			CO-PSO Mapping(planned)		
	PO1	PO3	PSO1	PSO2	
CO1	1	2	2	2	
CO2	2	2	2	2	
CO3	2	3	2	3	
CO4	2	3	2	3	
levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE)

Theory Component:							
Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks		Final marks	
Theory	30+30	10+10	20	100 (reduced to 50)		50	
■ 100 marks wil	■ 100 marks will be reduced to 50 marks for the calculation of SGPA and CGPA.						
Lab component:							
Components Conduct of the lab Journal submission Lab Test TotalMarks							
Lab	Lab 10 10 5 25						
Total CIE: 50 (T) +25(L) = 75 marks							
Minimum score to be eligible to SEE for this course : 40% in each component							
Not eligible in any one of the component will be considered as NOT eligible for the Course							

Scheme of Semester End Examination (SEE)

Scheme of Semester End Examination (SEE): Theory Component:

1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for				
	the calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass: 40 out of 100				
3.	Question paper contains two questions from each u	nit each carrying 2	20 marks. Students		
	have to answer one full question from each unit.				
La	b component:				
1.	Initial write up	10 marks			
	Conduct of experiment(s), result and conclusion	20 marks	50 mortes		
	One marks question	10 marks	JU IIIaIKS		
	Viva-voce	10 marks			
2.	It will be conducted for 50 marks having 3 hours/2	hours duration. It	will be reduced to		
	25 marks for the calculation of SGPA and CGP	A.			
3.	3. Viva-voce is conducted for individual student.				
То	Total SEE: $50(T) + 25(L) = 75$ marks				
Minimum score for passing this course : 40% in each component compulsory					
Not eligible in any one of the component will be considered as NOT eligible for the					
Co	Course				

RESEARCH METHODOLOGY AND IPR

Course Code	20SCS23	Credits L-T-P	3-0-1
Course type	PC	Total credits	4
Hours/week: L-T-P	3-0-2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40 Hrs; T = 0 Hrs; P = 24 Hrs Total = 64 Hrs	SEE Marks	50(T)+25(L) = 75 marks

	Course learning					
	Objectives					
1.	Understand the basic concepts of research and its methodologies					
2.	Identify and select the appropriate research/sampling design methods.					
3.	Analyze and interpret the data to enable hypothesis testing					
4.	Create the awareness about Intellectual Property Rights for the protection of inventions.					

Pre-requisites : NIL

Unit – I	10 Hours
Research Methodology: Introduction	
Meaning, Objectives, types, Research Approaches. Significance of Research	arch, Research
Methods versus Methodology, Research and scientific method, research Proc	ess, Criteria of
good research, Problems encountered by researchers.	

Research Problem:

Defining a research problem, Selecting a research problem, necessity and techniques involved in defining the research problem.

List of Experiments:

1. Identify the research problem and apply suitable approach for various parameters involved.

Unit – II	12 Hours
Research Design:	
Meaning, need for research design, features of a good design, important conce	epts relating to
research design, different research designs, Basic principles of experim	ental designs,

developing a research plan. **Sampling design:**

Implications of a sample design, Steps in sample design, criteria of selecting a sampling procedure, characteristics of a good sample design, different types of sample designs, Random Sample and complex random sample designs.

List of Experiments:

1.Selection of sample design for a given research problem using different sample design procedures.

2. Research design techniques, like: factorial design, L S design, randomized block design, response surface methodology.

	Uni	t – III						16 H	ours	
Data Collection Methods:										
<i>a</i> 11 <i>a b b</i>	~ 1			-			~			

Collection of Primary Data, Observation Method, Interview Method, Questionnaires, Schedules, Other Methods of Data Collection, Collection of Secondary Data, Case study method.

Processing and Analysis of Data

Processing operations, Elements/ types of analysis, Statistics in research- measures of central tendency or statistical averages, measures of dispersion, measures of asymmetry (skewness),

measures of relationship, Simple regression analysis, Multiple correlation and regression, Partial correlation, Association in case of attributes,

List of Experiments:

- 1. Techniques for data collection [Primary, Secondary].
- 2. Data Analytics relevant to various applications
- 3. Data Analytics relevant to various applications under probability theory.

Unit – IV

4. Regression and Correlation analysis.

12 Hours

Testing of hypotheses- Basic concepts, procedure for hypothesis testing, flow diagram, Test of hypothesis, procedure for hypothesis testing, Hypothesis for means, difference between means, comparing two related samples, proportions, difference between proportions, comparing a variance to some hypothesized population variance, power of test,.

Chi-square test: $\chi 2$ test and their applications in research studies.

Analysis of variance: Basic principles of ANOVA, ANOVA technique, setting up of analysis of variance table, one way, ANOVA, two way ANOVA, ANOVA in Latin square Design.

List of Experiments:

- 1. Research design techniques, like: factorial design, L S design, randomized block design, response surface methodology.
- 2. Testing an Hypothesis using ANOVA (1 way and 2 way ANOVA) and other Multivariate analysis

Unit – V	10 Hours
Intellectual Property Rights - IPR- Invention and Creativity- Intellec	tual Property-
Importance and Protection of Intellectual Property Rights (IPRs)- A brief summ	ary of: Patents,
Copyrights, Trademarks, Industrial Designs- Integrated Circuits-Geographic	al Indications-
Establishment of WIPO-Application and Procedures. Research ethics, Plagia	rism, Prior art
search.	
Interpretation and Report Writing: Meaning of interpretation, Why	interpretation,

Technique of interpretation, Precaution in interpretation, Significance of report writing, Different steps in writing report, Layout of the research report, Types of reports, Mechanics of writing research report.

List of Experiments: Case study on IPR and Report writing.

Self Study Topics				
Unit	Topic description			
No.				
1.	Significance of Research Methodology.			
2.	Implications of a sample design.			
3.	Other measures- Index numbers, Time series analysis.			
4.	Limitations of test of hypothesis.			
5.	Precautions for writing research reports.			

	Books						
	Text Books:						
1.	C R. Kothari, Research Methodology, New Age International Publishers, 2nd edition,						
	2007.						
	Reference Books:						
1.	Panneer Selvam, Research Methodology, PHI Learning Pvt. Ltd., 2007.						
2.	Dr. B.L. Wadhera -Intellectual Property Rights, Universal Law Publishing Co. Ltd						
	2002						

	William G Zikmund, Business Research Methods, Indian edition, South western Publishers, 8th Indian Reprint – 2009.
	E-resourses (NPTEL/SWAYAM. Any Other)- mention links
1.	https://onlinecourses.swayam2.ac.in/cec20_ge37 (Research Methodology)

	Course delivery methods		Assessment methods
1.	Lecture and Board	1.	Assignments and Open Book Assignments
2.	NPTEL/ Edusat	2.	Quizzes
3.	PowerPoint Presentation	3.	Internal Assessment Tests
4.	Videos	4.	Semester End Examination

	Course Outcome (COs)						
At the end of the course, the student will be able to Bloom's Level							
1.	Identify and select an appropriate methodology for research.	[L1]					
2.	Design and Apply suitable research/sampling procedure for the research problem.	[L3]					
3.	Analyze and interpret data collected.	[L4]					
4.	Evaluate various approaches for hypothesis testing.	[L5]					
5.	Discuss the significance of Intellectual Property Rights & report writing.	[L2]					

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research/investigation and development work to solve practical problems.	PO 1
2.	An ability to write and present a substantial technical report/ document.	PO 2
3.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.	PO 3

Program Specific Outcome of this course (PSOs)		
1.	Post graduates shall develop an ability to identify, formulate and apply knowledge of machine design to solve mechanical engineering problems pertaining to economical, environmental and social context.	1
2.	Post graduates shall develop knowledge of contemporary issues and an ability to use the techniques, skills and modern engineering tools necessary to engage in lifelong learning in the field of Machine Design.	2
3.	The graduate shall develop an ability to work on projects using multidisciplinary tools professionally and ethically.	3

Rubrics:					
Levels	Target				
1	50 % of the total marks is scored by 60% of the students. (It is example)				
2	60 % of the total marks is scored by 70% of the students.				
3	70 % of the total marks is scored by 80% of the students.				

CO-PO Mapping (planned)			CO-PSO Mapping(planned)				
	PO1	PO2	PO3	PSO1	PSO2	PSO3	
CO1	3	3	2	3	3	3	
CO2	2	2	2	2	2	2	
CO3	2	3	2	2	2	2	
CO4	2	2	2	2	2	2	
CO5	2	2	2	1	1	1	
le	levels: Low- 1, Medium- 2, High-3						

Scheme of Continuous Internal Evaluation (CIE)

Theory Component:						
Components	Addition of two IA tests	Addition of two assignments	Semina Mini Project	ur/ Total Mark	l s	Final marks
Theory	30+30	10+10	20	100 (reduced	to 50)	50
■ 100 marks wil	l be reduced to 50 n	narks for the calc	ulation of	of SGPA and	CGPA	
Lab component:						
Components	Conduct of the la	b Journal submis	ssion	Lab Test	Т	otalMarks
Lab	10	10		5		25
Total CIE: 50 (T) + 25(L) = 75 mar	·ks				
Minimum score	e to be eligible to Sl	EE for this cours	se : 40%	6 in each con	nponer	nt
Not eligible in a	ny one of the comp	oonent will be co	nsidere	d as NOT eli	gible f	or the Course
	Scheme of S	Semester End E	xaminat	tion (SEE)		
Scheme of Seme	ster End Examinat	tion (SEE):				
Theory Compon	ent:					
1. It will be con	nducted for 100 mar	ks of 3 hours dur	ation. It	will be reduc	ed to 5	0 marks for
the calculation of SGPA and CGPA.						
2. Numinum in 2. Question non	2. Minimum marks required in SEE to pass: 40 out of 100					
have to answer one full question from each unit.						
Lab component:						
1. Initial write u	ıp		10) marks		
Conduct of e	xperiment(s), result	and conclusion	20) marks		
One marks qu	uestion		10) marks	50) marks
Viva-voce 10 marks						
2. It will be conducted for 50 marks having 3 hours/2 hours duration. It will be reduced to						
25 marks for the calculation of SGPA and CGPA.						
3. Viva-voce is conducted for individual student.						
Total SEE: $50(T) + 25(L) = 75$ marks						
Minimum score for passing this course : 40% in each component compulsory						
Not eligible in any one of the component will be considered as NOT eligible for the						
Course						

Artificial Intelligence and Agent Technology (Theory)

Course Code	20SCS241	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	45 Hrs	SEE Marks	50 marks

Course learning objectives				
1.	To understand different logical systems for inference over formal domain representations			
	and trace how a particular inference algorithm works on a given problem specification			
2.	To understand various artificial intelligence techniques and agent technology			
3.	To Understand and apply appropriate game playing and planning strategies for a given			
	problem specification			

Pre-requisites: Discrete Mathematical Structures, Probability.

Unit – I	09 Hours				
Introduction to Artificial Intelligence: Introduction, What is AI, Strong Methods and weak					
Methods. Uses and Limitations:					
Knowledge Representation: Need for good representation, semantic nets, Frames, Search Spaces,					
Semantics Tress, Search Trees, Comb	inatorial Explosion, 1	Problem re	duction, Goal Trees,		
Combinatorial Explosion					

Unit – II09 HoursSearch Methodologies: Introduction, Problem solving as search, Data driven or goal driven
search, Generate and test, Depth First Search, Breadth First Search, Properties of search methods,
Implementing Depth-First and Breadth-First Search, Using Heuristics for Search, Hill Climbing,
Best-First Search, Identifying Optimal Paths, Constraint Satisfaction search, Forward Checking,
Local Search and Meta heuristics, Simulated Annealing. Genetic Algorithms for search, Real time
A*, Bidirectional search

Unit – III	09 Hours			
Game Playing: Game Trees, Minimax, Alpha beta pruning, Checkers, Chess				
Prepositional and Predicate Logic: Introduction, What is Logic, Why Logic is used in Artificial				
Intelligence, Logical Operators, Translating between English and Logic Notation, Truth Tables:				
Not, And, Or, Implies, if, Complex Truth Tables, Tautology, Equivalence, Propositional logic,				
Deduction, The deduction Theorem, Soundness, Completeness, Decideability, Monotonicity,				
Abduction and Inductive reasoning,				

Unit – IV	09 Hours		
Planning: Planning as a search, situation calculus, Frame problem, Means ends analysis			
Inference and Resolution for Problem Solving: Introduction, Resolution in prepositional logic:			
Applications of Resolution, Resolution in Predicate Logic, Normal forms for predicate logic			
Skolemization, Resolution Algorithms, Resolution for problem solving, Rules for knowledge			
representation, Rule-Based systems, Rule based expert systems, CLIPS	_		

Unit – V09 HoursAdvanced Knowledge Representation: Representations and semantics, Blackboard Architecture,
Scripts, Copycat Architecture, Nonmonotonic Reasoning, Reasoning about change, Case-based
Reasoning,

Intelligent Agents: Properties of Agents, Agent Classification, Reactive Agents, Interface Agents, Mobile Agents, Information Agents, Multiagent Systems, Collaborative agents, Agent architectures, Accessibility, Learning Agents, Robotic Agents

Self Study Topics			
Unit	Topic description		
No.			
Ι	Inheritance, Object Oriented Programming		
II	Nondeterministic search, non-chronological backtracking		
III	Modal logics and possible worlds, Dealing with change		
IV	Backward Chaining, CYC		
V	Braitenberg Vehicles		

	Books		
	Text Books:		
1.	Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett Publishers, 1 st Edition,		
	2004 onwards		
	Reference Books:		
1.	Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill		
	3 rd edition 2013 onwards		
2.	Stuart Russel, Peter Norvig: Artiificial Intelligence A Modern Approach, Pearson 3 rd edition		
	2013 onwards		
	E-resourses (NPTEL/SWAYAM Any Other)- mention links		
1.	https://nptel.ac.in/courses/106/105/106105077/		

Course delivery methods			Assessment methods
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

	Course Outcome (COs)				
At tl	he end of the course, the student will be able to	Bloom's Level			
1.	Design intelligent agents for problem solving, reasoning, planning, decision making and learning for specific design and performance constraints and when needed, design variants of existing algorithms.	L4			
2.	Apply AI techniques on current applications.	L3			
3.	Demonstrate ability for problem solving, knowledge representation, reasoning and learning.	L3			

	Program Outcome of this course (POs)	PO No.
1	An ability to independently carry out research /investigation and development	1
1.	work to solve practical problems.	1
2.	Students should be able to demonstrate a degree of mastery over the area as	
	per the specialization of the program. The mastery should be at a level higher	3
	than the requirements in the appropriate bachelor program	

	PSO No.	
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics:	
Levels	Target
1	60 % of the total marks is scored by 70% of the students
2	70 % of the total marks is scored by 80% of the students
3	80% and above of the total marks is scored by 90% of the students

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO3		PSO1	PSO2	PSO3
CO1	2	1		2	2	1
CO2	2	1		2	2	1
CO3	2	1		2	1	1
l	evels: L	ow- 1, Medium	- 2, High-3			

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

Writing two IA test is compulsory.
Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for				
	the calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass:				
3.	Question paper contains two questions from each unit each carrying 20 marks. Students				
	have to answer one full question from each unit.				

Wireless Communication Technology

Course Code	20SCS242	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	50 Hrs	SEE Marks	50 marks

Course learning objectives				
1.	To understand the evolution of wireless technologies from 1G to 5G.			
2.	To learn the requirements of 5G communication technology in the present industry			
	applications.			
3.	To understand the need of Multi-type and Device-to-Device (D2D) Communications in			
	the 5G wireless Systems			
4.	To illustrate the mode of multiple access in 5G technologies.			
Pre-r	Pre-requisites: Concept of Computer Networks and wireless communication.			

Unit – I **10 Hours** Introduction: Historical background: Industrial and technological revolution: from steam engines to the Internet, Mobile communications generations: from 1G to 4G, From mobile broadband (MBB) to extreme MBB, IoT: relation to 5G. From ICT to the whole economy. Rationale of 5G: high data volume, twenty-five billion connected devices and wide requirements, Security. Global initiatives: METIS and the 5G-PPP, China: 5G promotion group, Korea: 5G Forum, Japan: ARIB 2020 and Beyond Ad Hoc,

Unit – II	10 Hours			
5G use cases and system concept: 5G Use cases and requirements: Use cases,				
and key performance indicators. 5G system concept: Concept overview, Ez	xtreme mobile			
broadband, Massive machine-type communication, Ultra-reliable	machine-type			
communication, Dynamic radio access network.				

The 5G architecture: Introduction: NFVand SDN, Basics about RAN architecture. Highlevel requirements for the 5G architecture, Functional architecture and 5G flexibility: Functional split criteria, Functional split alternatives, Functional optimization for specific applications, Integration of LTE and new air interface to fulfill 5G requirements, Enhanced Multi-RAT coordination features. Physical architecture and 5G deployment: Deployment enablers.

Unit – IV **10 Hours** Machine-type communications: Introduction: Use cases and categorization of MTC, MTC requirements. Fundamental techniques for MTC: Data and control for short packets, Nonorthogonal access protocols. Massive MTC: Design principles,

Unit – III

10 Hours

Unit – V	10 Hours
The 5G radio-access technologies: Access design principles for multi-user co	mmunications:
Orthogonal multiple-access systems, Spread spectrum multiple-access systems,	Capacity limits
of multiple-access methods. Multi-carrier with filtering: a new waveform: Fil	ter-bank based
multi-carrier, Universal filtered OFDM. Non-orthogonal schemes for efficient m	nultiple access:
Non-orthogonal multiple access (NOMA).	

Self Study Topics		
Unit	Topic description	
No.		
1	Other 5G activities, IoT activities, Standardization activities: ITU-R, 3GPP, IEEE	
2	Lean system control plane, Localized contents and traffic flows.	
3	Flexible function placement in 5G deployments.	
4	MTC Technology components and 5G D2D RRM concept: an example.	
5	Sparse code multiple access (SCMA), Interleave division multiple access (IDMA).	

	Books
	Text Books:
1.	Afif Osseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless
	Communications Technology", Cambridge University Press, Edition 1/year 2016 and
	onwards
	Reference Books:
1.	Martyn Mallick, "Mobile and Wireless Design Essentials", Wiley Publishing, Inc.,
	Indianapolis, Indiana, 2003 and onwards
2.	Raj kamal: Mobile Computing, Oxford University Press, 2007 and onwards.
3.	Iti Saha Misra: Wireless Communications and Networks, 3G and Beyond, Tata McGraw
	Hill, 2009 and onwards.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://onlinecourses.nptel.ac.in/noc19_ee48/preview

Course delivery methods			Assessment methods
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

	Course Outcome (COs)	
At the end of the course, the student will be able to		Bloom's Level
1.	Demonstrate the Growth of wireless communication till 5G	[L3]
2. Elucidate the need of 5G in latest communication requirements		[L2]
3.	Explore the futuristic communication technologies like Multi-type and Device-to-Device (D2D) Communications in the 5G wireless Systems	[L3]
4.	Illustrate the mode of multiple accesses in 5G communication technologies	[L2]

	Program Outcome of this course (POs)	PO No.
1	An ability to independently carry out research /investigation and	
1.	development work to solve practical problems	1
2.	An ability to write and present a substantial technical report/document	2
	Students should be able to demonstrate a degree of mastery over the area as	
3.	per the specialization of the program. The mastery should be at a level higher	3
	than the requirements in the appropriate bachelor program	

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Rubrics: The rubrics for this cours would be through CIE performance

Levels	Target
1	60 % of the total marks is scored by 70% of the students
2	70 % of the total marks is scored by 80% of the students
3	80% and above of the total marks is scored by 90% of the students

CO-PO Mapping (planned)			CO-PSO Mapping(planned)			
	PO1	PO2	PO3	PSO1	PSO2	PSO3
CO1	2			1		
CO2	2			1		
CO3	2			1		
CO4	2			1		
l	levels: Low- 1, Medium- 2, High-3					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

➤ Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scheme of Semester End Examination (SEE):

1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for
	the calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass:
3.	Question paper contains two questions from each unit each carrying 20 marks. Students
	have to answer one full question from each unit

Robotic Process Automation Design and Development (Theory)

Course Code	20SCS243	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	45 Hrs	SEE Marks	50 marks

	Course learning objectives
1.	To understand Basic Programming concepts and the underlying logic/structure
2.	To Describe RPA, where it can be applied and how its implemented
3.	To Describe the different types of variables, Control Flow and data manipulation techniques
4.	To Understand Image, Text and Data Tables Automation
5.	To Describe automation to Email and various types of Exceptions and strategies to handle

Pre-requisites : Basics of Programming

Unit – I09 HoursPROGRAMMING BASICS & RECAPProgramming Concepts Basics - Understanding the application - Basic Web Concepts - Protocols -
Email Clients -. Data Structures - Data Tables - Algorithms - Software Processes - Software Design
- Scripting - .Net Framework - .Net Fundamentals - XML - Control structures and functions - XML
Variables & Arguments

Unit – II

RPA CONCEPTS

RPA Basics - History of Automation - What is RPA - RPA vs Automation - Processes & Flowcharts - Programming Constructs in RPA - What Processes can be Automated - Types of Bots - Workloads which can be automated - RPA Advanced Concepts - Standardization of processes - RPA Developemt methodologies - Difference from SDLC - Robotic control flow architecture - RPA business case - RPA Team - Proccess Design Document/Solution Design Document

	Unit – III
RPA TOOL INTRODUO	CTION & BASICS

Introduction to RPA Tool - The User Interface - Variables - Managing Variables - Naming Best Practices - The Variables Panel - Generic Value Variables - Text Variables - True or False Variables - Number Variables - Array Variables - Date and Time Variables - Data Table Variables - Managing Arguments - Naming Best Practices - The Arguments Panel - Using Arguments -About Imported Namespaces - Importing New Namespaces- Control Flow - Control Flow Introduction - If Else Statements - Loops - Advanced Control Flow - Sequences - Flowcharts -About Control Flow - Control Flow Activities - The Assign Activity - The Delay Activity - The Do While Activity - The If Activity - The Switch Activity - The While Activity - The For Each Activity - The Break Activity - Data Manipulation - Data Manipulation Introduction - Scalar variables, collections and Tables - Text Manipulation - Data Manipulation - Gathering and Assembling Data

Unit – IV

09 Hours

ADVANCED AUTOMATION CONCEPTS AND TECHNIQUES Recording and Advanced UI Interaction - Recording Introduction - Basic and Desktop Recording -Web Recording - Input/Output Methods - Screen Scraping - Data Scraping - Scraping advanced techniques - Selectors - Selectors - Defining and Assessing Selectors - Customization - Debugging

09 Hours

09 Hours

- Dynamic Selectors - Partial Selectors - RPA Challenge - Image, Text & Advanced Citrix Automation - Introduction to Image & Text Automation - Image based automation - Keyboard based automation - Information Retrieval - Advanced Citrix Automation challenges - Best Practices - Using tab for Images - Starting Apps - Excel Data Tables & PDF - Data Tables in RPA - -Extracting Data from PDF - Extracting a single piece of data - Anchors - Using anchors in PDF.

Unit – V

09 Hours

EMAIL AUTOMATION & EXCEPTIONAL HANDLING

Email Automation - Email Automation - Incoming Email automation - Sending Email automation - Debugging and Exception Handling - Debugging Tools

Self Study Topics			
Unit	Topic description		
No.			
Ι	HTML, CSS		
II	Industries best suited for RPA - Risks & Challenges with RPA and emerging ecosystem.		
III	Data Manipulation - Gathering and Assembling Data		
IV	Excel and Data Table basics - Data Manipulation in excel		
V	Strategies for solving issues - Catching errors		

	Books					
	Text Books:					
1.	Alok Mani Tripathi, Learning Robotic Process Automation, Publisher: Packt Publishing					
	Release Date: March 2018ISBN: 9781788470940					
	Reference Books:					
1.	Frank Casale (Author), Rebecca Dilla (Author), Heidi Jaynes (Author), Lauren Livingston (Author), Introduction to Robotic Process Automation: a Primer, Institute of Robotic Process Automation.					
2.	Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots, Automate Repetitive Tasks & Become An RPA Consultant					
3.	Srikanth Merianda, Robotic Process Automation Tools, Process Automation and their benefits: Understanding RPA and Intelligent Automation					
	E-resourses (NPTEL/SWAYAM Any Other)- mention links					
1.	https://www.uipath.com/rpa/robotic-process-automation					

Course delivery methods Assessment methods		Assessment methods	
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

Course Outcome (COs)			
At th	e end of the course, the student will be able to	Bloom's Level	
1.	Apply and Implement RPA	L3	
2.	Explain Image, Text and Data Tables Automation, E-mail automation and various types of exceptions and strategies to handle	L2	
3.	Design RPA solution for real world problems	L5	

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research /investigation and development work to solve practical problems.	1
2.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program	3

	Program Specific Outcome of this course (PSOs)	PSO
		No.
1	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
1.	¹ . concepts and algorithms along with tools to solve real world problems.	
	Develop Research Aptitude: Ability to identify research problem statement,	
2. carryout experimentation, draw inferences and present them at n		2
	international level.	
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	

Rubrics	:
Levels	Target
1	60 % of the total marks is scored by 80% of the students.
2	50 % of the total students certified by UiPath RPA Developer certification

CO-PO Mapping (planned)			nned)	CO-PSO Mapping(planned)		
	PO1	PO2		PSO1	PSO2	PSO3
CO1	2	2		3	1	2
CO2	2	2		1	1	1
CO3	2	2		1	1	1
le	vels: Lo	w- 1, Medium-	2, High-3			

Scheme of Continuous Internal Evaluation (CIE):

Componente	Addition of	Addition of two	Seminar/ Mini	Total	Final
Components	two IA	assignments	Project	Marks	marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

➢ Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	heme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for
	the calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass:
3.	Question paper contains two questions from each unit each carrying 20 marks. Students
	have to answer one full question from each unit.

Information Storage Management (Theory)

Course Code	20SCS244	Credits L-T-P	4-0-0
Course type	PE	Total credits	4
Hours/week: L-T-P	4-0-0	CIE Marks	50 marks
Total Hours:	45 Hrs	SEE Marks	50 marks

Course learning objectives				
1.	To identify the components of managing the data centre.			
2.	2. To understand logical and physical components of a storage infrastructure.			
3.	To evaluate storage architectures, including storage subsystems SAN, NAS, IPSAN			
	and CAS.			
4.	To understand the business continuity, backup and recovery methods.			

Pre-requisites : Knowledge of Networking and Operating systems.

Unit – I	9 Hours
Introduction to Information Storage Management, Data Center Environment	t, Application,
DBMS, Host, Connectivity, Storage, Disk Drive Components & Performance,	Host access to
Storage, DAS, Intelligent Storage System, Components of an Intelligent St	orage System,
Storage Provisioning, Types of Intelligent Storage Systems.	

Unit – II	9 Hours
Fiber Channel: Overview, SAN and Its Evolution, Components of FC SAN, FC	Connectivity,
switched fabric ports, FC Architecture, fabric services, login types, zoning, Topo	ologies.

Unit – III9 HoursNAS: General-Purpose Servers versus NAS Devices, Benefits of NAS, File Systems and
Network File Sharing, Components of NAS, NAS I/O Operation, NAS Implementations,
NAS File Sharing Protocols, Object-Based Storage Devices.

Unit – IV9 HoursBusiness Continuity, Information Availability, BC Terminology, BC Planning Life Cycle,
Failure Analysis, Business Impact Analysis, Backup and Archive, Backup Purpose, Backup
Considerations, Backup Granularity, Recovery Considerations, Backup Methods, Backup
Architecture, Backup and Restore Operations, Topologies, Backup Targets.9 Hours

Unit – V	9 Hours		
Information Security Framework, Risk Triad, Storage Security Doma	ains, Security		
Implementations in Storage Networking, Securing storage infrastructure in v	virtualized and		
cloud infrastructure, Monitoring the Storage Infrastructure, Storage Infrastructure Management			
Activities, Storage Infrastructure Management challenges.			

	Self Study Topics			
Unit		Topic description		
No.				
Ι	iSCSI, FCIP, FCoE			

II	Virtualization in SAN.
III	Content-Addressed Storage, CAS Use Cases, Unified Storage.
IV	Data De duplication, Backup in virtualized environment.
V	developing ideal solution, ILM, storage tiering.

	Books		
	Text Books:		
1.	EMC Corporation, "Information Storage and Management", Wiley India, 2 nd Edition,		
	2011.		
	Reference Books:		
1.	Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill,		
	Osborne, 2003.		
2.	Marc Farley, "Building Storage Networks", Tata McGraw Hill, Osborne, 2nd Edition,		
	2003.		
3.	Meeta Gupta, "Storage Area Network Fundamentals", Pearson Education Limited,		
	2002.		
	E-resourses (NPTEL/SWAYAM Any Other)- mention links		
1.			
2.			

Course delivery methods			Assessment methods
1.	Chalk and Talk	1.	Quiz
2.	РРТ	2.	IA Tests
3.	Online Presentation through Gmeet	3.	Assignments
4.		4.	

	Course Outcome (COs)	
At the end of the course, the student will be able to		Bloom's Level
1.	Distinguish various data storage management systems [L4].	
2.	Build storage area networks [L3].	
3.	Ensure business continuity using backup and archive [L4].	
	Manage and secure data centres [L3].	

	Program Outcome of this course (POs)	PO No.
1.	An ability to independently carry out research /investigation and development work to solve practical problems.	1
2.	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program.	3

Program Specific Outcome of this course (PSOs)		PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1

	Develop Research Aptitude: Ability to identify research problem statement,	
2.	carryout experimentation, draw inferences and present them at national and	2
	international level.	
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	

Rubrics	S:
Levels	Target
1	>70 % of the total marks is scored by 60% of the students.
2	Between 50 % and 69% of the total marks is scored by 60% of the students.
3	< 50 % of the total marks is scored by 60% of the students.

CO-PO Mapping (planned)				CO-PSO Mapping(planned)				
	PO1	PO2	PO3	PSO1	PSO2	PSO3		
CO1	1		2	2	1	1		
CO2	2		2	3	2	2		
CO3	1		2	3	2	2		
le	vels: Lov	w- 1, Medium-	2, High-3					

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of	Addition of two	Seminar/ Mini	Total	Final
Components	two IA	IA assignments Project		Marks	marks
Theory	30+30	10+10	20	100 (reduced to 50)	50
		·			

> Writing two IA test is compulsory.
> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	heme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for
	the calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass:
3.	Question paper contains two questions from each unit each carrying 20 marks. Students
	have to answer one full question from each unit.

KARNATAK LAW SOCIETY'S GOGTE INSTITUTE OF TECHNOLOGY

UDYAMBAG, BELAGAVI-590008

(An Autonomous Institution under Visvesvaraya Technological University, Belagavi) (APPROVED BY AICTE, NEW DELHI)

Department of Computer Science & Engineering

M.Tech. Scheme and Syllabus (2020 Scheme) 3rd to 4th Semester M.Tech(Computer Science & Engineering)

INSTITUTION VISION

Gogte Institute of Technology shall stand out as an institution of excellence in technical education and in training individuals for outstanding caliber, character coupled with creativity and entrepreneurial skills.

MISSION

To train the students to become Quality Engineers with High Standards of Professionalism and Ethics who have Positive Attitude, a Perfect blend of Techno-Managerial Skills and Problem solving ability with an analytical and innovative mindset.

QUALITY POLICY

- Imparting value added technical education with state-of-the-art technology in a congenial, disciplined and a research oriented environment.
- Fostering cultural, ethical, moral and social values in the human resources of the institution.
- Reinforcing our bonds with the Parents, Industry, Alumni, and to seek their suggestions for innovating and excelling in every sphere of quality education.

DEPARTMENT VISION

To be a center of Excellence for Education, Research and Entrepreneurship in Computer Science and Engineering in creating professionals who are competent to meet emerging challenges to benefit society.

MISSION

To impart and strengthen fundamental knowledge of students, enabling them to cultivate professional skills, entrepreneurial and research mindset with right attitude and aptitude.

	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
1.	The graduates will acquire core competence in basic science and engineering fundamentals necessary to formulate, analyze and solve engineering problems and to pursue advanced study.
2.	The graduates will acquire necessary techno-managerial and life-long learning skills to succeed as computer engineering professionals with an aptitude for higher education and entrepreneurship.
3.	The graduates will maintain high professionalism and ethical standards and also develop the ability to work in teams on IT as well as multidisciplinary domains.

	PROGRAM OUTCOMES (POs)
1.	An ability to independently carry out research /investigation and development work to solve practical problems
	to solve practical problems.
2.	An ability to write and present a substantial technical report/document.

	Students should be able to demonstrate a degree of mastery over the area as per the						
3.	specialization of the program. The mastery should be at a level higher than the						
	requirements in the appropriate bachelor program.						

	PROGRAM SPECIFIC OUTCOMES (PSOs)
1	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts
1.	and algorithms along with tools to solve real world problems.
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout
	experimentation, draw inferences and present them at national and international level.
	Professional skills and Entrepreneurship: Ability to demonstrate professional and
3.	leadership qualities required to pursue innovative career in Information Technology,
	self-employment and research activities.

3 rd Sem M.Tech												
C N	G			Contact Hours	Con tact	Credit Allocation		Total	Marks			
5.N 0.	Code	Course		L – T - P	Hou rs/w eek	L	Т	Р	credit s	CIE	SEE	TOTA L
1.	20SCS31	Cloud Computing	PC 1	4 – 0 - 0	4	4	0	0	4	50	50	100
2.	20SCS32	Big Data Management	PC 2	3-0-2	5	3	0	1	4	50+2 5	50+2 5	150
3.	20SCS33	Cyber Security	PC 3	3-0-2	5	3	0	1	4	50+2 5	50+2 5	150
4.	20SCS34X	Elective-III	PE- III	4 – 0 - 0	4	4	0	0	4	50	50	100
5.	20SCS35	SWAYAM Online course	OC						3			
6.	20SCS36	Project Phase-1	PR 1						4	50		50
		Total							23			

• OC: Student can register for one course of 12 weeks OR two courses (4 weeks+ 8weeks) to earn 3 credits

• Maximum TWO courses should be integrated type

ELECTIVE – III

20SCS341	Internet of Things
20SCS342	Information Retrieval
20SCS343	Natural Language Processing and Text Mining
20SCS344	Multicore Architecture & Programming

Course Code	20SCS31	Credits	4			
Course type	PC	CIE Marks	50 marks			
Hours/week: L-T-P	4 - 0 - 0	SEE Marks	50 marks			
Total Hours:	45	SEE Duration	3			

Cloud Computing

Course learning objectives

1. To understand various basic concepts related to cloud computing technologies.

Unit I

Unit II

Unit III

- 2. To learn how to use Cloud Services.
- 3. To apply Map-Reduce concept to applications.
 - To understand role of Virtualization and resource management in enabling Cloud
- 4. Computing.

Pre-requisites: Distributed Computing.

Evolution of Computing, Cloud Computing Basics

Introduction to Mainframe architecture; Client-server architecture; Cluster Computing; Grid Computing; Parallel Computing and Distributed Computing; Evolution of sharing on the Internet; Utility Computing; Autonomic Computing; Cloud Computing; Introduction of Cloud Computing; Service Models; Deployment Models; Characteristics of Cloud Computing; Advantages and Obstacles in cloud computing; Ethical issues in cloud computing.

Cloud Infrastructure

Cloud Vulnerabilities, NIST reference model, Cloud computing at Amazon, Cloud computing the Google perspective, Microsoft Windows Azure and online services, Open-source software platforms for private clouds, Cloud storage diversity and vendor lock-in, Energy use and ecological impact, Service level agreements.

Cloud Computing: Application Paradigms.

Challenges of cloud computing, Architectural styles of cloud computing, Workflows: Coordination of multiple activities, Coordination based on a state machine model: The Zookeeper, The Map Reduce programming model, A case study: The Grep The Web application, Cloud for science and engineering, High-performance computing on a cloud, Cloud computing for Biology research.

Cloud Resource Virtualization

Virtualization, Layering and virtualization, Virtual machine monitors, Virtual Machines, Performance and Security Isolation, Full virtualization and paravirtualization, Hardware support for virtualization, Case Study: Xen a VMM based paravirtualization, The dark side of virtualization.

Self-Study: vBlades: Performance comparison of virtual machines.

Unit V

9 Hours

9 Hours

9 Hours

9 Hours

Cloud Resource Management and Scheduling.

Policies and mechanisms for resource management, Application of control theory to task scheduling on a cloud, Stability of a two level resource allocation architecture, Feedback control based on dynamic thresholds, Resourcing bundling: Combinatorial auctions for cloud resources ,Scheduling algorithms for computing clouds, Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud; scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines, Resource management and dynamic scaling.

Self-Study: Introduction to Cloud Simulator.

Text Books:

- 1. Cloud Computing by Dr. Kumar Saurabh, Wiley India, 2011 and onwards.
- 2. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier (MK) 2013 and onwards.

Reference Books:

- 1. Cloud Computing Principles and Paradigms by Rajkumar Buyya, Wiley India 2011 and onwards.
- 2. John W Rittinghouse, James FRansome: Cloud Computing Implementation, Management and Security, CRC Press 2013.

Course delivery methods

Course delivery methods A			Assessment methods		
1.	Chalk and board			1.	Internal assessment
2.	PPT			2.	Assignment
3.	Video lectures			3.	Quiz
				4.	Seminar / project
			~		

Course Outcomes (COs)

Bloom's Level At the end of the course, the student will be able to, Discuss cloud computing and control considerations within cloud L2 1. computing environments. 2. **Identify** various cloud services. L2 Explain various concepts related to virtualization. 3. L2 **Apply** Map-Reduce concept L3 4. Analyze resource allocation and scheduling algorithms in cloud L3 5. computing 6. **Demonstrate** working of cloud simulator. L3 **Program Outcome of this course (Cos)** PO No.

1

- 1. Application of Knowledge: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.
- 2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine 3 ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

Program Specific Outcome of this course (PSOs)		PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1

	concepts and algorithms along with tools to solve real world problems.	
	Develop Research Aptitude: Ability to identify research problem statement,	
2.	carryout experimentation, draw inferences and present them at national and	2
	international level.	l
	Professional skills and Entrepreneurship: Ability to demonstrate	
3.	professional and leadership qualities required to pursue innovative career in	3
	Information Technology, self-employment and research activities.	1

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

➢ Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):	
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the	
	calculation of SGPA and CGPA.	
2.	Minimum marks required in SEE to pass:	
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to	
	answer one full question from each unit.	

Big	Data	Management
~ 5	Durn	1. Iana Semente

Course Code	20SCS32	Credits L-T-P	3 - 0- 2
Course type	PC	Total credits	4
Hours/week: L-T-P	3-0-2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40 Hrs; T = Hrs; P = Hrs Total = Hrs	SEE Marks	50(T)+25(L) = 75 marks

	Course learning objectives	
1.	To understand big data dimensions and its applications.	
2.	To understand NoSQL big data management.	
3.	To become aware of the Map Reduce paradigm and the Hadoop framework.	
4.	To explore various Big Data Tools and Technologies.	

Pre-requisites : Database Management System, Basic Commands of UNIX Operating System.

Unit - I	9 Hours
Understanding Big Data: What is big data? : Characteristics of Big Data	a, Data in the
Warehouse and Data in Hadoop; Why is Big Data Important? : When to consider	der a Big Data
solution? Big Data Use Cases: IT log analytics, Fraud detection, Social	Media, Risk
Management and Energy Sector.Patterns for Big Data Deploymen	t. Big Data
Frameworks:Hadoop, Spark, Flink,Storm.	-
Self learning tonics: Big Data Challenges	

Unit - II	9 Hours
NoSQL Data Management: Introduction to NoSQL – aggregate data models	s – aggregates
- key-value and document data models - relationships - graph databases -	- schema less
databases - materialized views - distribution models - sharding - master-slave	e replication –
peer-peer replication – sharding and replication.	

Self learning topics: Self-Study: Map-reduce partitions and combining-composing map-reduce calculation.

Unit - III	9 Hours
Basics of Hadoop: The History of Hadoop, Components of Hadoop, Application	on
Development in Hadoop, Getting your data into Hadoop, Other Hadoop Comp	onents
Dataformat-analyzingdatawithHadoop-scalingout-Hadoopstreaming-Hadoop	pipes.Design
of HDFS	
Self learning tonics: HDES commands	

Self learning topics: HDFS commands

Unit - IV	9 Hours
Mapreduce Applications: MapReduce work flows-unit tests with MRUnit-	test data
and local tests-anatomy of MapReduce job run-classic Map-reduce-YARN-	-failures

in classic Map-reduce and YARN-job scheduling Map Reduce on Spark using Scala programming a case study.

Self learning topics:

 Unit - V
 9 Hours

 Hadoop Related Tools Pig-Grunt-pig datamodel-PigLatin-developing and testing PigLatin scripts.Hive-data types and file formats-Hive QLdatadefinition-HiveQL datamanipulation-HiveQLqueries.
 9 Hours

Self learning topics: Hbase –data model and implementations- Hbase clients –Hbase examples, Cassandra –Cassandra data model –Cassandra examples-Cassandra clients-Hadoop integration.

	Unit – VI
	List of experiments
1.	Download, Configure and Install Hadoop on Windows. Experiment with few basis Hadoop file system commands like. Execute commands to transfer files from local file system to HDFS file system.
2.	Download, install Pig and perform load and store operations on files of various types.
3.	Write a Pig-Latin script to perform Word-Count on a text file.
4.	Perform the following operation on a given dataset
	a. Grouping b. Co-grouping c. Filtering d. Sorting
5.	Download and Install Mongo-DB and create a database of Customer Orders using the
	document data-model and perform the basic insert, update and querying on the data stored.
6	Down-load and install Cassendra, create, populate and Query the database using various
	commands provided in Cassendra.
7	Down-load and install Hive and experiment with HQL on the data stored.
8	Download and install Tableau and Visualize the data using various options provided in the Tool.
9	Down-load and install Spark, and write a Scala program to perform Word-Count on a text
	document
10	Write a Scala program to implement Linear Regression using Spark-ML library.

	Books
	Text Books:
1.	Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, George Lapis,
	Understanding Big Data – Analytics for Enterprise Class Hadoop and Streaming Data,

	McGraw Hill, 2012.
2.	P. J. Sadalage and M. Fowler, "NoSQL Distilled: A Brief Guide to the Emerging
	World of Polyglot Persistence", Addison-Wesley Professional, 2012.
3.	TomWhite,"Hadoop: The Definitive Guide", Third Edition, O'Reilly, 2012.
4.	EricSammer,"HadoopOperations",O'Reilly,2012.
	Reference Books:
1.	Vignesh Prajapati, Bigdataanalyticswith Rand Hadoop, SPD 2013.
2.	E.Capriolo, D.Wampler, and J.Rutherglen, "Programming Hive", O'Reilly, 2012.
3.	LarsGeorge,"HBase:TheDefinitiveGuide",O'Reilly, 2011.
4.	Alan Gates,"ProgrammingPig", O'Reilly, 2011.
	E-resourses (NPTEL/SWAYAM Any Other)- mention links
1.	
2	

Course delivery methods	Assessment methods
Lecture and Board	Internal Assessments
Power point presentations	Assignments
Videos	Quiz/ Seminar/ Course Project
Classroom Exercises	

	Course Outcome (COs)		
Outc	omes usually follow the format: "At the end of the course, students will be able to'inse	ert action	
verb	here + insert knowledge, skills, or attitudes the student is expected to develop'](Highl	ight the	
actio	action verb representing the Bloom's level.)		
At th	At the end of the course, the student will be able to Bloom's Level		
1.	Describe bigdata and use cases from selected business domains.	L1	
2.	Justify use of data model in BigData.	L5	
3.	Install, configure, and run Hadoop and DFS.	L3	
4	Demonstrate Hadoop related tools such as Pig and Hive for big data analytics.	L3	

Program Outcome of this course (Cos)PO No.owledge: Acquire in-depth knowledge of specific discipline1

- 1. **Application of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.
- 2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine ering problems, evaluate a wide range of potential solutions for those problems and

3

arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
 Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level. 		2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Scheme of Continuous Internal Evaluation (CIE)

Theory Component:						
Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks		Final marks
Theory	30+30	10+10	20	100 (reduced to 50)		50
■ 100 marks will	■ 100 marks will be reduced to 50 marks for the calculation of SGPA and CGPA.					
Lab component:						
Components	Components Conduct of the lab Journal submission Lab Test TotalMarks					
Lab	Lab 10 10 5		25			
Total CIE: $50(T) + 25(L) = 75$ marks						
Minimum score to be eligible to SEE for this course : 40% in each component						
Not eligible in any one of the component will be considered as NOT eligible for the Course						

Scheme of Semester End Examination (SEE)

Scl	Scheme of Semester End Examination (SEE):		
Th	Theory Component:		
1.	1. It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the		
	calculation of SGPA and CGPA.		
2.	2. Minimum marks required in SEE to pass: 40 out of 100		
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to answer one full question from each unit.		
Lab component:			
1.	Initial write up	10 marks	50 mode
	Conduct of experiment(s), result and conclusion	20 marks	50 marks

	One marks question	10 marks	
	Viva-voce	10 marks	
2.	It will be conducted for 50 marks having 3 hours/2 hour for the calculation of SGPA and CGPA.	rs duration. It will be	e reduced to 25 marks
3.	Viva-voce is conducted for individual student.		
То	Total SEE: 50(T) +25(L) = 75 marks		
Minimum score for passing this course : 40% in each component compulsory			
No	Not eligible in any one of the component will be considered as NOT eligible for the Course		

Cyber Security(Integrated)

Course Code	20SCS33	Credits L-T-P	3 - 0- 1
Course type	PC	Total credits	4
Hours/week: L-T-P	3-0-2	CIE Marks	50(T)+25(L) = 75 marks
Total Hours:	L = 40Hrs; T = Hrs; P = 10Hrs $Total = 50Hrs$	SEE Marks	50(T)+25(L) = 75 marks

	Course learning objectives
1.	To understand key issues plaguing the information security world, incident
	management process, and penetration testing
2.	To understand Social Engineering techniques, identify theft, and social engineering
	countermeasures
3.	To perform vulnerability analysis to identify security loopholes in the target
	organization's network, communication infrastructure, and end systems.
4.	To understand different types of attacks, application hacking methodology, and
	countermeasures

Pre-requisites :Networks, Information Security, Operating Systems

Unit - I		_08Hours
Ethical Hacking: Overview of Ethics, Overview of Ethical Hacking, Methodology of Ethical		
Hacking, Networking	Foundations:Con	nmunications
Models, Topologies, Physical Networking, IP, TCP, UDP, Internet	Control	Message
Protocol, Network Architectures, Cloud Computing, Security	Foundations: The	e Triad, Risk,
Policies, Standards, and Procedures, Security Technology, Bein	g Prepared	
Self learning topics:		

Unit - II__08_HoursFootprinting and Reconnaissance:Open-Source Intelligence,Domain Name System,Passive
Reconnaissance,Website Intelligence,Technology Intelligence,Scanning Networks:Ping
Sweeps,Port Scanning, Vulnerability Scanning, Packet Crafting and Manipulation,Evasion
Techniques, Enumeration:Service Enumeration, Remote Procedure Calls,Server Message
Block, Simple Network Management Protocol,Simple Mail Transfer Protocol, Web-Based
EnumerationSelf learning topics:

Unit - III_08_HoursSystem Hacking: Searching for Exploits,System Compromise,Gathering Passwords,
Password Cracking,Client-Side Vulnerabilities,Post Exploitation, Malware:Malware
Types,Malware Analysis,Creating Malware,Malware Infrastructure, Antivirus Solutions,
Sniffing: Packet Capture, Packet Analysis,Spoofing AttacksSelf learning topics:

Unit - IV_08_HoursSocial Engineering:Social Engineering,Physical Social Engineering,Phishing Attacks,
Website Attacks, Wireless Social Engineering, Automating Social Engineering, Wireless
Security: Wi-Fi, Bluetooth,Mobile Devices, Attack and Defense: Web Application
Attacks,Denial of Service Attacks, Application Exploitation,Lateral Movement, Defense in
Depth/Defense in Breadth, Defensible Network ArchitectureSelf learning topics:

Unit - V_08 HoursCryptography: Basic Encryption,Symmetric Key Cryptography, Asymmetric Key
Cryptography, Certificate Authorities and Key Management, Cryptographic Hashing, PGP and
S/MIME, Security Architecture and Design: Data Classification, Security Models,
Application Architecture, Security Architecture, Database Attacks,IDS, Firewalls, And
Honeypots,IoT, And Botnets, applications of cyber security for blockchainSelf learning topics:

	Unit – VI 10 Hours
	List of experiments
1.	Install Kali Linux and explore various tools (Audit)
2.	Participate in Capture The Flag events (Audit)
3.	Understand and participate in Bug Bounty programs (Audit)
4.	Install, configure and learn Python security packages for writing scripts (Audit)
5.	Write a Python script to use HIBP APIs to check whether your account has been
	compromised. List all accounts whose password has been compromised. Also use HIBP
	APIs to check whether your new password has been compromised.
	Write a Python script to prevent SQL and XPath injection attacks.
	Write a Python script to perform arbitrary computations of encrypted data.
	Write a Python script to hack ciphers such as Caesar cipher or Transposition Cipher.
	Write a Python script to perform programmatic packet analysis using PyShark.
	Write a Python script to perform packet sniffing using Scapy

Books		
	Text Books:	
1.	Ric Messier, CEH v10 Certified Ethical Hacker Study Guide, Sybex, 2019	
2.	Michael Gregg, Omar Santos, Certified Ethical Hacker (CEH) Version 10 Cert Guide,	
	Pearson IT Certification, 3rd Edition, 2019	
3.		
4.		
	Reference Books:	
1.	Matt Walker, CEH Certified Ethical Hacker All-in-One Exam Guide, Fourth Edition,	
	McGraw-Hill, 4th Edition, 2019	
2.		
	E-resourses (NPTEL/SWAYAM Any Other)- mention links	
1.		

2.

Course delivery methods	Assessment methods
Lecture and Board	Internal Assessments
Power point presentations	Assignments
Videos	Quiz/ Seminar/ Course Project
Classroom Exercises	

Course Outcome (COs)				
Outcomes usually follow the format: "At the end of the course, students will be able to'insert action				
verb here + insert knowledge, skills, or attitudes the student is expected to develop'](Highlight the				
action verb representing the Bloom's level.)				
At the end of the course, the student will be able to				
1.	Perform vulnerability analysis to identify security loopholes in the target organization's network, communication infrastructure, and end systems	4		
2.	Understand mobile platform attack vector, android vulnerabilities, mobile security guidelines, and tools	2		
3.	Implement wireless encryption, wireless hacking methodology, wireless hacking tools, and Wi-Fi security tools	5		

Program Outcome of this course (Cos)

PO No. 1

1. **Application of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

Program Specific Outcome of this course (PSOs)		
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Scheme of Continuous Internal Evaluation (CIE)

Theory Component:

3
Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Mark	s	Final marks
Theory	30+30	10+10	20	100 (reduced	to 50)	50
■ 100 marks will be reduced to 50 marks for the calculation of SGPA and CGPA.						
Lab component:						
Components Conduct of the lab Journal submission Lab Test TotalMarks						
Lab	10	10		5		25
Total CIE: 50 (T) +25(L) = 75 marks						
Minimum score to be eligible to SEE for this course : 40% in each component						
Not eligible in any one of the component will be considered as NOT eligible for the Course						

Scheme of Semester End Examination (SEE)

Scl	Scheme of Semester End Examination (SEE):				
Th	eory Component:				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the				
	calculation of SGPA and CGPA.				
2.	2. Minimum marks required in SEE to pass: 40 out of 100				
3.	3. Question paper contains two questions from each unit each carrying 20 marks. Students have to answer one full question from each unit.				
Lab component:					
1.	Initial write up	10 marks			
	Conduct of experiment(s), result and conclusion	20 marks	50 montra		
	One marks question	10 marks	JU marks		
	Viva-voce	10 marks			
2.	It will be conducted for 50 marks having 3 hours/2 ho	ours duration. It will b	e reduced to 25 marks		
	for the calculation of SGPA and CGPA.				
3.	3. Viva-voce is conducted for individual student.				
Total SEE: 50(T) +25(L) = 75 marks					
Minimum score for passing this course : 40% in each component compulsory					
Not eligible in any one of the component will be considered as NOT eligible for the Course					

Internet of Things

Course Code	20SCS341	Credits	4
Course type	PE	CIE Marks	50 marks
Hours/week: L-T-P	4-0-0	SEE Marks	50 marks
Total Hours:	50 Hrs	SEE Duration	3 Hours for 100 marks

Course learning objectives		
1.	To understand the physical, logical design and the protocols in IOT.	
2.	To understand the IOT architecture and protocol stack.	
3.	To learn the various components and modes of communications with IOTs.	
4.	To understand the address capabilities and mobile technologies of IOT.	
5	To discuss about the cloud and IOT environment.	

Pre-requisites:1. Fundamentals of Basic Electronics.

2. Fundamentals of Communication and Computer Network.

Unit – I	10 Hours
INTRODUCTION TO INTERNET OF THINGS: What is the Internet of Things? Internet of Things?	ernet of Things
Definitions and Frameworks : IoT Definitions, IoT Architecture, General Obse	rvations, ITU-T
Views, Working Definition, IoT Frameworks, Basic Nodal Capabilities, Physical	Design of IoT:
IoT Protocols, Logical Design of IoT: Functional block, communication Model, C	ommunication
API's, IoT Enabling Technologies: WSN, cloud computing, Big data Analytics, c	ommunication
Protocols, Embedded systems, IoT levels and Deployment templates: Level 1 to	Level 5.

Unit – II	10 Hours
IOT NETWORK ARCHITECTURE AND DESIGN: The one M2M IOT Standardized	Architecture,
The IoT World Forum (IoTWF) Standardized Architecture, A Simplified IoT Arc	chitecture, IoT
protocol stack, The Core IoT Functional Stack, IoT Data Management and Comp	oute Stack: Fog
Computing, Edge Computing, The Hierarchy of Edge, Fog, and Cloud Ic	T and M2M:
Introduction to M2M, Difference between IoT and M2M, SDN and NFV for IoT.	

Unit – III	10 Hours	
SMART OBJECTS: THE "THINGS" IN IOT : Sensors, Actuators, and Smart Objects,	Sensor	
Networks, Connecting Smart Objects: Communications Criteria, IoT Access Technologies: IEEE		
802.15.4, IEEE 802.15.4g and 802.15.4e, IEEE 1901.2a, LoRaWAN.		

Unit – IV	10 Hours
ADDRESSING TECHNIQUES FOR THE IoT: Address Capabilities, IPv6 Protocol	Overview, IPv6
Tunneling, IPsec in IPv6, Header Compression Schemes, Quality of Service in I	Pv6, Migration
Strategies to IPv6, Mobile IPV6 technologies for the IoT: Protocol Details, I	Pv6 over low-
power WPAN (6LoWPAN).	

Unit – V	10 Hours
IoT PLATFORMS AND CLOUD OFFERINGS: What is an IoT Device, Exem	plary Devices:
Raspberry Pi, Raspberry Pi Interfaces, Other IoT Devices: pcDuino, Beagl	e Bone Black,
CubieBoard, ARDUINO, Introduction to cloud storage models and commu	nication API's,
WAMP-AutoBahn for IoT, Python web application framework.	

	Books
	Text Books:
1.	Internet of Things: A Hands-On Approach Arshdeep Bahga, Vijay Madisetti VPT –
	Paperback 2015 978- 0996025515 628/- 2.
2.	IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the
	Internet of Things David Hanes, Gonzalo Salgueiro, Patrick Grossetete Cisco Press –
	Paperback – 16 Aug 2017 978-1- 58714-456- 1 599.
3.	Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M
	Communications Daniel Minoli Willy Publication s - 2013 978-1-118- 47347-4, 466.
4.	
	Reference Books:
1.	Smart Internet of things projects Agus Kurniawan Packt - Sep 2016 978-1- 78646- 651-
	8 2 The Internet of Things Key Olivier Willy Publication 2 nd Edition 978
2.	Applications and protocols Hersent s 119- 99435-0, 3 The Internet of Things
	Connecting Objects to the Web Hakima Chaouchi, Willy Publications 978-1- 84821-
	140-7.

Course Outcome (COS)	Course	Outcome	(COs)
----------------------	--------	---------	-------

Outcomes usually follow the format: "At the end of the course, students will be able to 'insert action verb here + insert knowledge, skills, or attitudes the student is expected to develop'] (Highlight the **action verb** representing the Bloom's level.)

At the end of the course, the student will be able to		Bloom's Level
1.	Identify the various components and explain the policies, challenges and issues in the field of IOT	[L1, L2]
2.	Apply the basic principles and demonstrate the skill of proposing suitable solutions to design problems relating to IOT	[L3]
3.	Propose the design of IOT systems and develop the software for sensors and controllers	[L5]
4.	Develop schemes for the applications of IOT in real time scenarios	[L5]

Program Outcome of this course (Cos)

PO No.

1. **Application of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to

1

discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

2. Problem Solving: Think laterally and originally, conceptualize and solve engine
 3 ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

	Program Specific Outcome of this course (PSOs)	PSO No.	
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.	1	
2.	 Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level 		
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3	

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50
Writing two IA test is compulsory.					

Minimum marks required to qualify for SEE : 20 out of 50

7 Minimum marks required to quarry for SEE . 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the
	calculation of SGPA and CGPA.
2.	Minimum marks required in SEE to pass:
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to
	answer one full question from each unit.

INFORMATION RETRIEVAL

Subject Code:	20SCS342	Credits:	04
Course Type:	PE-C	CIE Marks:	50
Hours/Week: L-T-P	4-0-0	SEE Marks :	50
Total Hours:	50	SEE Duration:	3 Hours

Course Learning Objectives:

- 1. To understand the basics of Information Retrieval with pertinence to modeling, query operations and indexing
- 2. To get an understanding of machine learning techniques for text classification and clustering
- 3. To understand the various applications of Information Retrieval giving emphasis to Multimedia IR, Web Search
- 4. To understand the concepts of queries specification judgment and search engines

Prerequisite: Web Programming, Database Management System.

UNIT-I

10 Hours

Introduction: Motivation, Basic concepts, Past, present, and future, The retrieval process. **Modeling:** Introduction, A taxonomy of information retrieval models, Retrieval: Adhoc and filtering, A formal characterization of IR models, Classic information retrieval, Alternative set theoretic models, Alternative algebraic models, Alternative probabilistic models, Structured text retrieval models, Models for browsing.

UNIT-II

Retrieval Evaluation: Introduction, Retrieval performance evaluation, Reference collections. **Query Languages:** Introduction, keyword-based querying, Pattern matching, Structural queries, Query protocols. **Query Operations:** Introduction, User relevance feedback, Automatic local analysis, Automatic global analysis.

UNIT-III

Text and Multimedia Languages and Properties: Introduction, Metadata, Text, Markup languages, Multimedia. **Text Operations:** Introduction, Document preprocessing, Document clustering, Text compression, Comparing text compression techniques.

Indexing and Searching: Introduction; Inverted Files; Other indices for text; Boolean queries; Sequential searching; Pattern matching; Structural queries; Compression.

UNIT-IV

10 Hours

10 Hours

10 Hours

Parallel and Distributed IR: Introduction, Parallel IR, Distributed IR.

UNIT-V

10 Hours

User Interfaces and Visualization: Introduction, Human-Computer interaction, The information access process, Starting pints, Query specification, Context, Using relevance judgments, Interface support for the search process. Searching the Web: Introduction, Challenges, Characterizing the web, Search engines, Browsing, Meta searchers, Finding the needle in the haystack, Searching using hyperlinks.

TEXT BOOKS:

1. Ricardo Baeza-Yates, Berthier Ribeiro-Neto: Modern Information Retrieval, Pearson, 1999. (Chapter 1.1 to 1.4, Chapter 2, Chapter 3, Chapter 4, Chapter 5, Chapter 6, Chapter 7, Chapter 8, Chapter 9, Chapter 10, Chapter 13)

REFERENCE BOOKS:

1. David A. Grossman, Ophir Frieder: Information Retrieval Algorithms and Heuristics, 2nd Edition, Springer, 2004.

Course delivery methods		Assessment methods	
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

Course Outcomes:

Upon completion of the course, the students would be able to

- **1. Identify** the taxonomy of an Information Retrieval system [L1]
- 2. Explain various machine learning techniques for text classification and clustering [L2]
- **3. Demonstrate** the working of search engine [L3]
- **4. Analyze** the Web content structure [L4]

Program Outcome of this course (Cos) PO No.

1

1. Application of Knowledge: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine 3 ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
	concepts and algorithms along with tools to solve real world problems.	

2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks
Theory	30+30	10+10	20	100 (reduced to 50)	50

> Writing two IA test is compulsory.
> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):			
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the			
	calculation of SGPA and CGPA.			
2.	Minimum marks required in SEE to pass:			
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to			
	answer one full question from each unit.			

NATURAL LANGUAGE PROCESSING AND TEXT MINING

Subject Code:	20SCS343	Credits:	4
Course Type:	PE	CIE Marks:	50
Hours/week: L – T – P	4 - 0 - 0	SEE Marks:	50
Total Hours:	50	SEE Duration:	3 Hours

Course Objectives:

1. Learn the techniques in natural language processing.

2. Familiar with the natural language generation.

3. Be exposed to Text Mining.

4. Analyze the information retrieval techniques

Prerequisite: Introductory course on mobile computing

UNIT I

10 Hours

OVERVIEW AND LANGUAGE MODELING: Overview: Origins and challenges of NLP Language and Grammar-Processing Indian Languages- NLP Applications-Information Retrieval. Language Modeling: Various Grammar- based Language Models-Statistical Language Model.

UNIT II

10 Hours

WORD LEVEL AND SYNTACTIC ANALYSIS: Word Level Analysis: Regular Expressions-Finite-State Automata-Morphological Parsing-Spelling Error Detection and correction-Words and Word classes-Part-of Speech Tagging. Syntactic Analysis: Contextfree Grammar-Constituency- Parsing-Probabilistic Parsing.

UNIT III

Extracting Relations from Text: From Word Sequences to Dependency Paths: Introduction, Subsequence Kernels for Relation Extraction, A Dependency-Path Kernel for Relation Extraction and Experimental Evaluation. Mining Diagnostic Text Reports by Learning to Annotate Knowledge Roles: Introduction, Domain Knowledge and Knowledge Roles, Frame Semantics and Semantic Role Labeling, Learning to Annotate Cases with Knowledge Roles and Evaluations. A Case Study in Natural Language Based Web Search: InFact System Overview, The GlobalSecurity.org Experience.

UNIT IV

10 Hours

10 Hours

Evaluating Self-Explanations in iSTART: Word Matching, Latent Semantic Analysis, and Topic Models: Introduction, iSTART: Feedback Systems, iSTART: Evaluation of Feedback Systems, Textual Signatures: Identifying Text-Types Using Latent Semantic Analysis to Measure the Cohesion of Text Structures: Introduction, Cohesion, Coh-Metrix, Approaches to Analyzing Texts, Latent Semantic Analysis, Predictions, Results of Experiments. Automatic Document Separation: A Combination of Probabilistic Classification and Finite- State Sequence Modeling: Introduction, Related Work, Data Preparation, Document Separation as a Sequence Mapping

Problem, Results. Evolving Explanatory Novel Patterns for Semantically-Based Text Mining: Related Work, A Semantically Guided Model for Effective TextMining.

UNIT V

10 Hours

INFORMATION RETRIEVAL AND LEXICAL RESOURCES: Information Retrieval: Design features of Information Retrieval Systems-Classical, Non classical, Alternative Models of Information Retrieval – valuation Lexical Resources: World Net-Frame Net- Stemmers-POS Tagger- Research Corpora.security

Text Books

1. Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

2. Anne Kao and Stephen R. Poteet (Eds), "Natural LanguageProcessingandText Mining", Springer Verlag London Limited 2007.

References

 Daniel Jurafsky and James H Martin, "Speech and Language Processing: Anintroduction to Natural Language Processing, Computational Linguistics and SpeechRecognition", 2nd Edition, Prentice Hall, 2008.
 James Allen, "Natural Language Understanding", 2nd edition, Benjamin/Cummingspublishingcompany, 1995.

3. Gerald J. Kowalski and Mark.T. Maybury, "Information Storage and Retrieval systems", Kluwer academic Publishers, 2000.

4. Steven Bird, Ewan Klein, Edward Loper, "Natural Language Processing with Python," Publisher: O'Reilly Media, June 2009

5. Christopher D.Manning and HinrichSchutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.

Course delivery methods		Assessment methods	
1.	Lecture and Board	1.	Internal Assessments
2.	Power point presentations	2.	Assignments
3.	Videos	3.	Quiz/ Seminar/ Course Project
4.	Classroom Exercises	4.	

Course Outcomes:

The students will be able to

- 1. Analyze the natural language text. [L4]
- 2. Generate the natural language. [L2]
- 3. Demonstrate Text mining. [L2]
- 4. Apply information retrieval techniques. [L3]

Program Outcome of this course (Cos)

1. **Application of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine 3

PO No. 1

ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

	Program Specific Outcome of this course (PSOs)	PSO No.
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical	1
	Concepts and algorithms along with tools to solve real world problems.	
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.	2
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks		
Theory	Theory 30+30		20	100 (reduced to 50)	50		
 Writing two IA test is compulsory. Minimum marks required to qualify for SEE : 20 out of 50 							

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the				
	calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass:				
3.	Ouestion paper contains two questions from each unit each carrying 20 marks. Students have to				
	answer one full question from each unit.				

Multi-Core Architecture and Programming

Subject Code	18SCS344	Credits	4
Course Type	PE	CIE Marks	50
Hours/Week: L-T-P	4-0-0	SEE Marks	50
Total Hours	50	SEE Duration	3

Course Objectives:

- 1. To understand the recent trends in the field of computer architecture and identify performance related parameters.
- 2. To study the concepts of parallel programming.
- 3. To understand the concepts of multi threading and OPENMP.
- 4. To analyze the solutions to Common Parallel Programming Problems.

Prerequisite: Computer Organization, Operating System, Advanced computer Architecture

Unit I **10 Hours** Multi-core Architecture: Motivation for Concurrency in Introduction to software, Parallel Computing Platforms, Parallel Computing in Microprocessors, Differentiating Multi-core Architectures from Hyper- Threading Technology, Multithreading on Single-Core versus Multi-Core Platforms Understanding Performance, Amdahl's Law, Growing Returns: Gustafson's Law. System Overview of **Threading:** Defining Threads, System View of Threads, Threading above the Operating System, Threads inside the OS, Threads inside the Hardware, What Happens When a Thread Is Created, Application Programming Models and Threading, Virtual Environment: VMs and Platforms, Runtime Virtualization, System Virtualization.

Unit II

Fundamental Concepts of Parallel Programming: Designing for Threads, Task Decomposition, Data Decomposition, Data Flow Decomposition, Implications of Different Decompositions, Challenges You'll Face, Parallel Programming Patterns, A Motivating Problem: Error Diffusion, Analysis of the Error Diffusion Algorithm, An Alternate Approach: Parallel Error Diffusion, Other Alternatives.

Unit III

10 Hours

10 Hours

Threading and Parallel Programming Constructs: Synchronization, Critical Sections, Deadlock, Synchronization Primitives, Semaphores, Locks, Condition Variables, Messages, Flow Controlbased Concepts, Fence. Barrier, Implementation-dependent Threading Features. Threading APIs, Threading APIs for Microsoft Windows, Win32/MFC Thread APIs, Threading APIs for Microsoft. NET Framework, Creating Threads, Managing Threads, Thread Pools. Thread Synchronization, POSIX Threads, Creating Threads, Managing Threads, Thread Synchronization, Signaling, Compilation and Linking.

Unit IV

OpenMP: A Portable Solution for Threading: Challenges in Threading a Loop, Loop-carried Dependence, Data-race Conditions, Managing Shared and Private Data, Loop Scheduling and Portioning, Effective Use of Reductions, Minimizing Threading Overhead, Work-sharing Sections, Performance-oriented Programming, Using Barrier and No wait, Interleaving Single-thread and Multi-thread Execution, Data Copy-in and Copy-out, Protecting Updates of Shared Variables, Intel Task queuing Extension to OpenMP, OpenMP Library Functions, OpenMP Environment Variables, Compilation, Debugging, performance.

Unit V

10 Hours

Solutions to Common Parallel Programming Problems: Too Many Threads, Data Races, Deadlocks, and Live Locks, Deadlock, Heavily Contended Locks, Priority Inversion, Solutions for Heavily Contended Locks, Non-blocking Algorithms, ABA Problem, Cache Line Ping-ponging, Memory Reclamation Problem, Recommendations, Thread-safe Functions and Libraries, Memory Issues, Bandwidth, Working in the Cache, Memory Contention.

A Case Study: Threading on Intel Multi-core Processors.

Text Books

- 1. Shameem Akhther and Jason Roberts, "Multicore Programming, Increasing Performance through Software Multi-threading", Intel Press, 2006.
- 2. Michael J Quinn, "Parallel programming in C with MPI and OpenMP", Tata McGraw Hill, 2003.

Reference Books

- 1. Rohit Chandra, Leonardo Dagum, Dave Kohr etc. "Parallel Programming in Openmp", 2000.
- 2. John L. Hennessey and David A. Patterson, "Computer architecture A quantitative approach", Morgan Kaufmann/Elsevier Publishers, 5th. Edition, 2011.

Course delivery methods			Assessment methods		
1.	Lecture and Board	1.	Internal Assessments		
2.	Power point presentations	2.	Assignments		
3.	Videos	3.	Quiz/ Seminar/ Course Project		
4.	Classroom Exercises	4.			

Course Outcomes:

The students should be able to:

- 1. Identify the limitations of ILP and the need for multi-core architectures [L1].
- 2. Analyze the issues related to multiprocessing [L4].
- 3. Develop the solutions using parallel programming [L3].

10 Hours

4. Demonstrate the use of synchronization technique in threads [L3].

Program Outcome of this course (Cos) PO No.

1. **Application of Knowledge**: Acquire in-depth knowledge of specific discipline or professional area, including wider and global perspective, with an ability to discriminate, evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.

2. **Problem Solving**: Think laterally and originally, conceptualize and solve engine ering problems, evaluate a wide range of potential solutions for those problems and arrive at feasible, optimal solutions after considering public health and safety, cultural, societal and environmental factors in the core areas of expertise.

	Program Specific Outcome of this course (PSOs)	PSO No.			
1.	Analyzing and Modeling skills: Ability to analyze and use of mathematical concepts and algorithms along with tools to solve real world problems.				
2.	Develop Research Aptitude: Ability to identify research problem statement, carryout experimentation, draw inferences and present them at national and international level.				
3.	Professional skills and Entrepreneurship: Ability to demonstrate professional and leadership qualities required to pursue innovative career in Information Technology, self-employment and research activities.	3			

Scheme of Continuous Internal Evaluation (CIE):

Components	Addition of two IA tests	Addition of two assignments	Seminar/ Mini Project	Total Marks	Final marks		
Theory	30+30	10+10	20	100 (reduced to 50)	50		

Writing two IA test is compulsory.

> Minimum marks required to qualify for SEE : 20 out of 50

Self Study topics shall be evaluated during CIE (Assignments and IA tests) and 10% weightage shall be given in SEE question paper.

Scl	Scheme of Semester End Examination (SEE):				
1.	It will be conducted for 100 marks of 3 hours duration. It will be reduced to 50 marks for the				
	calculation of SGPA and CGPA.				
2.	Minimum marks required in SEE to pass:				
3.	Question paper contains two questions from each unit each carrying 20 marks. Students have to				
	answer one full question from each unit.				

1

3

4 th Sem M.Tech								
S.No.	Course Code	Course	Course		Total credits	Marks CIE SEE TOTA		
1.	20SCS41	#Internship	PI	6-8 weeks	5	50	50	100
2.	20SCS42	Project Phase -2	PR2		4	50(25+25)		50
3.	20SCS43	Project Phase -3	PR3		4	50(25+25)		50
4.	20SCS44	Evaluation of Project and Viva- voce	PR5		10		150(50+100)	150
Total				23	150	200	350	

#Internship: 6 to 8 weeks either in one slot or multiple slots during vacation between 2nd and 3rdsem / between 3rd and 4thsem

Project Phase 2: CIE- 50 marks (25 marks – Internal guide + 25 marks- presentation)

Project Phase 3: CIE- 50 marks (25 marks –Internal guide + 25 marks- presentation)

Project Viva-voce: SEE- 150 marks (50 marks for report evaluation (**Avg. of Internal & external examiner marks**) + 100 marks viva- voce)